No Arabic abstract
We consider a deformation of the Robert-Wagner foam evaluation formula, with an eye toward a relation to formal groups. Integrality of the deformed evaluation is established, giving rise to state spaces for planar GL(N) MOY graphs (Murakami-Ohtsuki-Yamada graphs). Skein relations for the deformation are worked out in details in the GL(2) case. These skein relations deform GL(2) foam relations of Beliakova, Hogancamp, Putyra and Wehrli. We establish the Reidemeister move invariance of the resulting chain complexes assigned to link diagrams, giving us a link homology theory.
In this paper we introduce a chain complex $C_{1 pm 1}(D)$ where D is a plat braid diagram for a knot K. This complex is inspired by knot Floer homology, but it the construction is purely algebraic. It is constructed as an oriented cube of resolutions with differential d=d_0+d_1. We show that the E_2 page of the associated spectral sequence is isomorphic to the Khovanov homology of K, and that the total homology is a link invariant which we conjecture is isomorphic to delta-graded knot Floer homology. The complex can be refined to a tangle invariant for braids on 2n strands, where the associated invariant is a bimodule over an algebra A_n. We show that A_n is isomorphic to B(2n+1, n), the algebra used for the DA-bimodule constructed by Ozsvath and Szabo in their algebraic construction of knot Floer homology.
We show that if a prime homology sphere has the same Floer homology as the standard three-sphere, it does not contain any incompressible tori.
In this paper, we study the higher Hochschild functor and its relationship with factorization algebras and topological chiral homology. To this end, we emphasize that the higher Hochschild complex is a $(infty,1)$-functor from the category $hsset times hcdga$ to the category $hcdga$ (where $hsset$ and $hcdga$ are the $(infty,1)$-categories of simplicial sets and commutative differential graded algebras) and give an axiomatic characterization of this functor. From the axioms we deduce several properties and computational tools for this functor. We study the relationship between the higher Hochschild functor and factorization algebras by showing that, in good cases, the Hochschild functor determines a constant commutative factorization algebra. Conversely, every constant commutative factorization algebra is naturally equivalent to a Hochschild chain factorization algebra. Similarly, we study the relationship between the above concepts and topological chiral homology. In particular, we show that on their common domains of definition, the higher Hochschild functor is naturally equivalent to topological chiral homology. Finally, we prove that topological chiral homology determines a locally constant factorization algebra and, further, that this functor induces an equivalence between locally constant factorization algebras on a manifold and (local system of) $E_n$-algebras. We also deduce that Hochschild chains and topological chiral homology satisfies an exponential law, i.e., a Fubini type Theorem to compute them on products of manifolds.
We define a grid presentation for singular links i.e. links with a finite number of rigid transverse double points. Then we use it to generalize link Floer homology to singular links. Besides the consistency of its definition, we prove that this homology is acyclic under some conditions which naturally make its Euler characteristic vanish.
The study of triangulations on manifolds is closely related to understanding the three-dimensional homology cobordism group. We review here what is known about this group, with an emphasis on the local equivalence methods coming from Pin(2)- equivariant Seiberg-Witten Floer spectra and involutive Heegaard Floer homology.