Do you want to publish a course? Click here

Rings and arcs around evolved stars. II. The Carbon Star AFGL 3068 and the Planetary Nebulae NGC 6543, NGC 7009 and NGC 7027

390   0   0.0 ( 0 )
 Added by Martin A. Guerrero
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed comparative study of the arcs and fragmented ring-like features in the haloes of the planetary nebulae (PNe) NGC 6543, NGC 7009, and NGC 7027 and the spiral pattern around the carbon star AFGL 3068 using high-quality multi-epoch HST images. This comparison allows us to investigate the connection and possible evolution between the regular patterns surrounding AGB stars and the irregular concentric patterns around PNe. The radial proper motion of these features, ~15 km/s, are found to be consistent with the AGB wind and their linear sizes and inter-lapse times (500-1900 yr) also agree with those found around AGB stars, suggesting a common origin. We find evidence using radiative-hydrodynamic simulations that regular patterns produced at the end of the AGB phase become highly distorted by their interactions with the expanding PN and the anisotropic illumination and ionization patterns caused by shadow instabilities. These processes will disrupt the regular (mostly spiral) patterns around AGB stars, plausibly becoming the arcs and fragmented rings observed in the haloes of PNe.



rate research

Read More

We present images of the planetary nebulae (PNe) NGC 7354 and NGC 3242 in four mid-infrared (MIR) photometric bands centred at 3.6, 4.5, 5.8 and 8.0 microns; the results of observations undertaken using the Spitzer Space Telescope (SST). The resulting images show the presence of a halo and rings in NGC 3242, as previously observed through narrow band imaging at visual wavelengths, as well as evidence for a comparable halo and ring system in NGC 7354. This is the first time that a halo and rings have been observed in the latter source. We have analysed the formation of halos as a result of radiatively accelerated mass loss in the AGB progenitors. Although the models assume that dust formation occurs in C-rich environments, we note that qualitatively similar results would be expected for O-rich progenitors as well. The model fall-offs in halo density are found to result in gradients in halo surface brightness which are similar to those observed in the visible and MIR.
High resolution infrared imaging observations of the young Planetary Nebulae NGC 7027 and BD +303639, taken with the newly installed TIFR Infrared Camera-II (TIRCAM2) on 3.6m Devasthal Optical Telescope (DOT), ARIES, Nainital, are being reported. The images are acquired in J, H, K, polycyclic aromatic hydrocarbon (PAH) and narrow-band L (nbL) filters. The observations show emission from warm dust and PAHs in the circumstellar shells. The imaging of the two objects are among the first observations in PAH and nbL bands using TIRCAM2 on DOT. The NGC 7027 images in all bands show similar elliptical morphology with ~6.7 and ~4.5 semi-major and semi-minor axes. Considering size up to 10% of peak value the nebula extends upto 8 from the central star revealing a multipolar evolution. The relatively cooler BD +303639 shows a rectangular-ring shaped nebula. In J and H bands it shows an angular diameter of ~8, while a smaller ~6.9 size is observed in K, PAH and nbL bands. The 3.28 micron emission indicates presence of PAHs at about 6000 and 5000 AU from the central stars in NGC 7027 and BD +303639 respectively. Analysis suggests domination of neutral PAHs in BD+303639, while in NGC 7027 there is higher ionization and more processed PAH population.
176 - Andrea Kunder , G. Bono 2014
Stellar population studies of globular clusters have suggested that the brightest clusters in the Galaxy might actually be the remnant nuclei of dwarf spheroidal galaxies. If the present Galactic globular clusters formed within larger stellar systems, they are likely surrounded by extra-tidal halos and/or tails made up of stars that were tidally stripped from their parent systems. The stellar surroundings around globular clusters are therefore one of the best places to look for the remnants of an ancient dwarf galaxy. Here an attempt is made to search for tidal debris around the supernovae enriched globular clusters M22 and NGC 1851 as well as the kinematically unique cluster NGC 3201. The stellar parameters from the Radial Velocity Experiment (RAVE) are used to identify stars with RAVE metallicities, radial velocities and elemental-abundances consistent with the abundance patterns and properties of the stars in M22, NGC 1851 and NGC 3201. The discovery of RAVE stars that may be associated with M22 and NGC 1851 are reported, some of which are at projected distances of ~10 degrees away from the core of these clusters. Numerous RAVE stars associated with NGC 3201 suggest that either the tidal radius of this cluster is underestimated, or that there are some unbound stars extending a few arc minutes from the edge of the clusters radius. No further extra-tidal stars associated with NGC 3201 could be identified. The bright magnitudes of the RAVE stars make them easy targets for high resolution follow-up observations, allowing an eventual further chemical tagging to solidify (or exclude) stars outside the tidal radius of the cluster as tidal debris. In both our radial velocity histograms of the regions surrounding NGC 1851 and NGC 3201, a peak of stars at 230 km/s is seen, consistent with extended tidal debris from omega Centauri.
Stellar post asymptotic giant branch (post-AGB) evolution can be completely altered by a final thermal pulse (FTP) which may occur when the star is still leaving the AGB (AFTP), at the departure from the AGB at still constant luminosity (late TP, LTP) or after the entry to the white-dwarf cooling sequence (very late TP, VLTP). Then convection mixes the He-rich material with the H-rich envelope. According to stellar evolution models the result is a star with a surface composition of $mathrm{H}approx,20,$% by mass (AFTP), $approx 1,$% (LTP), or (almost) no H (VLTP). Since FTP stars exhibit intershell material at their surface, spectral analyses establish constraints for AGB nucleosynthesis and stellar evolution. We performed a spectral analysis of the so-called hybrid PG 1159-type central stars (CS) of the planetary nebulae Abell 43 and NGC7094 by means of non-local thermodynamical equilibrium models. We confirm the previously determined effective temperatures of $T_mathrm{eff} = 115,000pm 5,000,$K and determine surface gravities of $log (g,/,mathrm{cm/s^2}) = 5.6pm 0.1$ for both. From a comparison with AFTP evolutionary tracks, we derive stellar masses of $0.57^{+0.07}_{-0.04},M_odot$ and determine the abundances of H, He, and metals up to Xe. Both CS are likely AFTP stars with a surface H mass fraction of $0.25 pm 0.03$ and $0.15 pm 0.03$, respectively, and a Fe deficiency indicating subsolar initial metallicities. The light metals show typical PG 1159-type abundances and the elemental composition is in good agreement with predictions from AFTP evolutionary models. However, the expansion ages do not agree with evolution timescales expected from the AFTP scenario and alternatives should be explored.
329 - M. Zorotovic 2009
We present the results of a search for variable stars in the globular cluster NGC 5286, which has recently been suggested to be associated with the Canis Major dwarf spheroidal galaxy. 57 variable stars were detected, only 19 of which had previously been known. Among our detections one finds 52 RR Lyrae (22 RRc and 30 RRab), 4 LPVs, and 1 type II Cepheid of the BL Herculis type. Periods are derived for all of the RR Lyrae as well as the Cepheid, and BV light curves are provided for all the variables. The mean period of the RRab variables is <Pab> = 0.656 days, and the number fraction of RRc stars is N(c)/N(RR) = 0.42, both consistent with an Oosterhoff II (OoII) type -- thus making NGC 5286 one of the most metal-rich ([Fe/H] = -1.67; Harris 1996) OoII globulars known to date. The minimum period of the RRabs, namely Pab,min = 0.513 d, while still consistent with an OoII classification, falls towards the short end of the observed Pab,min distribution for OoII globular clusters. As was recently found in the case of the prototypical OoII globular cluster M15 (NGC 7078), the distribution of stars in the Bailey diagram does not strictly conform to the previously reported locus for OoII stars. We provide Fourier decomposition parameters for all of the RR Lyrae stars detected in our survey, and discuss the physical parameters derived therefrom. The values derived for the RRcs are not consistent with those typically found for OoII clusters, which may be due to the clusters relatively high metallicity -- the latter being confirmed by our Fourier analysis of the ab-type RR Lyrae light curves. We derive for the cluster a revised distance modulus of (m-M)V = 16.04 mag. (ABRIDGED)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا