Do you want to publish a course? Click here

Zero-shot topic generation

118   0   0.0 ( 0 )
 Added by Oleg Vasilyev
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present an approach to generating topics using a model trained only for document title generation, with zero examples of topics given during training. We leverage features that capture the relevance of a candidate span in a document for the generation of a title for that document. The output is a weighted collection of the phrases that are most relevant for describing the document and distinguishing it within a corpus, without requiring access to the rest of the corpus. We conducted a double-blind trial in which human annotators scored the quality of our machine-generated topics along with original human-written topics associated with news articles from The Guardian and The Huffington Post. The results show that our zero-shot model generates topic labels for news documents that are on average equal to or higher quality than those written by humans, as judged by humans.



rate research

Read More

Neural models for automated fact verification have achieved promising results thanks to the availability of large, human-annotated datasets. However, for each new domain that requires fact verification, creating a dataset by manually writing claims and linking them to their supporting evidence is expensive. We develop QACG, a framework for training a robust fact verification model by using automatically generated claims that can be supported, refuted, or unverifiable from evidence from Wikipedia. QACG generates question-answer pairs from the evidence and then converts them into different types of claims. Experiments on the FEVER dataset show that our QACG framework significantly reduces the demand for human-annotated training data. In a zero-shot scenario, QACG improves a RoBERTa models F1 from 50% to 77%, equivalent in performance to 2K+ manually-curated examples. Our QACG code is publicly available.
Neural topic models can augment or replace bag-of-words inputs with the learned representations of deep pre-trained transformer-based word prediction models. One added benefit when using representations from multilingual models is that they facilitate zero-shot polylingual topic modeling. However, while it has been widely observed that pre-trained embeddings should be fine-tuned to a given task, it is not immediately clear what supervision should look like for an unsupervised task such as topic modeling. Thus, we propose several methods for fine-tuning encoders to improve both monolingual and zero-shot polylingual neural topic modeling. We consider fine-tuning on auxiliary tasks, constructing a new topic classification task, integrating the topic classification objective directly into topic model training, and continued pre-training. We find that fine-tuning encoder representations on topic classification and integrating the topic classification task directly into topic modeling improves topic quality, and that fine-tuning encoder representations on any task is the most important factor for facilitating cross-lingual transfer.
Automatically inducing high quality knowledge graphs from a given collection of documents still remains a challenging problem in AI. One way to make headway for this problem is through advancements in a related task known as slot filling. In this task, given an entity query in form of [Entity, Slot, ?], a system is asked to fill the slot by generating or extracting the missing value exploiting evidence extracted from relevant passage(s) in the given document collection. The recent works in the field try to solve this task in an end-to-end fashion using retrieval-based language models. In this paper, we present a novel approach to zero-shot slot filling that extends dense passage retrieval with hard negatives and robust training procedures for retrieval augmented generation models. Our model reports large improvements on both T-REx and zsRE slot filling datasets, improving both passage retrieval and slot value generation, and ranking at the top-1 position in the KILT leaderboard. Moreover, we demonstrate the robustness of our system showing its domain adaptation capability on a new variant of the TACRED dataset for slot filling, through a combination of zero/few-shot learning. We release the source code and pre-trained models.
Thinking aloud is an effective meta-cognitive strategy human reasoners apply to solve difficult problems. We suggest to improve the reasoning ability of pre-trained neural language models in a similar way, namely by expanding a tasks context with problem elaborations that are dynamically generated by the language model itself. Our main result is that dynamic problem elaboration significantly improves the zero-shot performance of GPT-2 in a deductive reasoning and natural language inference task: While the model uses a syntactic heuristic for predicting an answer, it is capable (to some degree) of generating reasoned additional context which facilitates the successful application of its heuristic. We explore different ways of generating elaborations, including fewshot learning, and find that their relative performance varies with the specific problem characteristics (such as problem difficulty). Moreover, the effectiveness of an elaboration can be explained in terms of the degree to which the elaboration semantically coheres with the corresponding problem. In particular, elaborations that are most faithful to the original problem description may boost accuracy by up to 24%.
Neural Machine Translation (NMT) systems rely on large amounts of parallel data. This is a major challenge for low-resource languages. Building on recent work on unsupervised and semi-supervised methods, we present an approach that combines zero-shot and dual learning. The latter relies on reinforcement learning, to exploit the duality of the machine translation task, and requires only monolingual data for the target language pair. Experiments show that a zero-shot dual system, trained on English-French and English-Spanish, outperforms by large margins a standard NMT system in zero-shot translation performance on Spanish-French (both directions). The zero-shot dual method approaches the performance, within 2.2 BLEU points, of a comparable supervised setting. Our method can obtain improvements also on the setting where a small amount of parallel data for the zero-shot language pair is available. Adding Russian, to extend our experiments to jointly modeling 6 zero-shot translation directions, all directions improve between 4 and 15 BLEU points, again, reaching performance near that of the supervised setting.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا