Enhancement of acoustic spin pumping by acoustic distributed Bragg reflector cavity


Abstract in English

Surface acoustic waves (SAWs) in the GHz frequency range can inject spin currents dynamically into adjacent nonmagnetic layers via spin pumping effect associated with ferromagnetic resonance. Here, we demonstrate an enhancement of acoustic ferromagnetic resonance and spin current generation by a pair of SAW reflector gratings, which form an acoustic analogue of the distributed Bragg reflector cavity. In the experiment, we confirmed 2.04 $pm$ 0.02 times larger SAW power absorption in a device with cavity than in case of no acoustic cavity. We confirmed up to 2.96 $pm$ 0.02 times larger spin current generation by measuring electric voltages generated by the inverse Edelstein effect (IEE) at the interface between Cu and Bi$_2$O$_3$. The results suggest that acoustic cavities would be useful to enhance the conversion efficiency in SAW driven coupled magnon-phonon dynamics.

Download