Do you want to publish a course? Click here

Timescales for detection of super-Chandrasekhar white dwarfs by gravitational wave astronomy

90   0   0.0 ( 0 )
 Added by Surajit Kalita
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In about last couple of decades, the inference of the violation of the Chandrasekhar mass-limit of white dwarfs from indirect observation is probably a revolutionary discovery in astronomy. Various researchers have already proposed different theories to explain this interesting phenomenon. However, such massive white dwarfs usually possess very little luminosity, and hence they, so far, cannot be detected directly by any observations. We have already proposed that the continuous gravitational wave may be one of the probes to detect them directly, and in the future, various space-based detectors such as LISA, DECIGO, and BBO, should be able to detect many of those white dwarfs (provided they behave like pulsars). In this paper, we address various timescales related to the emission of gravitational as well as dipole radiations. This exploration sets a timescale for the detectors to observe the massive white dwarfs.



rate research

Read More

After the prediction of many sub- and super-Chandrasekhar (at least a dozen for the latter) limiting mass white dwarfs, hence apparently peculiar class of white dwarfs, from the observations of luminosity of type Ia supernovae, researchers have proposed various models to explain these two classes of white dwarfs separately. We earlier showed that these two peculiar classes of white dwarfs, along with the regular white dwarfs, can be explained by a single form of the f(R) gravity, whose effect is significant only in the high-density regime, and it almost vanishes in the low-density regime. However, since there is no direct detection of such white dwarfs, it is difficult to single out one specific theory from the zoo of modified theories of gravity. We discuss the possibility of direct detection of such white dwarfs in gravitational wave astronomy. It is well-known that in f(R) gravity, more than two polarization modes are present. We estimate the amplitudes of all the relevant modes for the peculiar as well as the regular white dwarfs. We further discuss the possibility of their detections through future-based gravitational wave detectors, such as LISA, ALIA, DECIGO, BBO, or Einstein Telescope, and thereby put constraints or rule out various modified theories of gravity. This exploration links the theory with possible observations through gravitational wave in f(R) gravity.
Recent evidence of super-Chandrasekhar white dwarfs (WDs), from the observations of over-luminous type Ia supernovae (SNeIa), has been a great astrophysical discovery. However, no such massive WDs have so far been observed directly as their luminosities are generally quite low. Hence it immediately raises the question of whether there is any possibility of detecting them directly. The search for super-Chandrasekhar WDs is very important as SNeIa are used as standard candles in cosmology. In this article, we show that continuous gravitational wave can allow us to detect such super-Chandrasekhar WDs directly.
201 - Surajit Kalita 2021
Over the past couple of decades, researchers have predicted more than a dozen super-Chandrasekhar white dwarfs from the detections of over-luminous type Ia supernovae. It turns out that magnetic fields and rotation can explain such massive white dwarfs. If these rotating magnetized white dwarfs follow specific conditions, they can efficiently emit continuous gravitational waves and various futuristic detectors, viz. LISA, BBO, DECIGO, and ALIA can detect such gravitational waves with a significant signal-to-noise ratio. Moreover, we discuss various timescales over which these white dwarfs can emit dipole and quadrupole radiations and show that in the future, the gravitational wave detectors can directly detect the super-Chandrasekhar white dwarfs depending on the magnetic field geometry and its strength.
Recent detection of gravitational wave from nine black hole merger events and one neutron star merger event by LIGO and VIRGO shed a new light in the field of astrophysics. On the other hand, in the past decade, a few super-Chandrasekhar white dwarf candidates have been inferred through the peak luminosity of the light-curves of a few peculiar type Ia supernovae, though there is no direct detection of these objects so far. Similarly, a number of neutron stars with mass $>2M_odot$ have also been observed. Continuous gravitational wave can be one of the alternate ways to detect these compact objects directly. It was already argued that magnetic field is one of the prominent physics to form super-Chandrasekhar white dwarfs and massive neutron stars. If such compact objects are rotating with certain angular frequency, then they can efficiently emit gravitational radiation, provided their magnetic field and rotation axes are not aligned, and these gravitational waves can be detected by some of the upcoming detectors, e.g. LISA, BBO, DECIGO, Einstein Telescope etc. This will certainly be a direct detection of rotating magnetized white dwarfs as well as massive neutron stars.
The past four years have seen a scientific revolution through the birth of a new field: gravitational-wave astronomy. The first detection of gravitational waves---recognised by the 2017 Nobel Prize in Physics---provided unprecedented tests of general relativity while unveiling a previously unknown class of massive black holes, thirty times more massive than the Sun. The subsequent detection of gravitational waves from a merging binary neutron star confirmed the hypothesised connection between binary neutron stars and short gamma-ray bursts while providing an independent measurement of the expansion of the Universe. The discovery enabled precision measurement of the speed of gravity while shedding light on the origin of heavy elements. At the time of writing, the Laser Interferometer Gravitational-wave Observatory (LIGO) and its European partner, Virgo, have published the detection of eleven gravitational-wave events. New, not-yet-published detections are announced on a nearly weekly basis. This fast-growing catalogue of gravitational-wave transients is expected to yield insights into a number of topics, from the equation of state of matter at supra-nuclear densities to the fate of massive stars. The science potential of 3G observatories is enormous, enabling measurements of gravitational waves from the edge of the Universe and precise determination of the neutron star equation of state. Australia is well-positioned to help develop the required technology. The Mid-term Review for the Decadal plan for Australian astronomy 2016-2025 should consider investment in a scoping study for an Australian Gravitational-Wave Pathfinder that develops and validates core technologies required for the global 3G detector network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا