Do you want to publish a course? Click here

Carbon ionization at Gbar pressures: an ab initio perspective on astrophysical high-density plasmas

156   0   0.0 ( 0 )
 Added by Mandy Bethkenhagen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A realistic description of partially-ionized matter in extreme thermodynamic states is critical to model the interior and evolution of the multiplicity of high-density astrophysical objects. Current predictions of its essential property, the ionization degree, rely widely on analytical approximations that have been challenged recently by a series of experiments. Here, we propose a novel ab initio approach to calculate the ionization degree directly from the dynamic electrical conductivity using the Thomas-Reiche-Kuhn sum rule. This Density Functional Theory framework captures genuinely the condensed matter nature and quantum effects typical for strongly-correlated plasmas. We demonstrate this new capability for carbon and hydrocarbon, which most notably serve as ablator materials in inertial confinement fusion experiments aiming at recreating stellar conditions. We find a significantly higher carbon ionization degree than predicted by commonly used models, yet validating the qualitative behavior of the average atom model Purgatorio. Additionally, we find the carbon ionization state to remain unchanged in the environment of fully-ionized hydrogen. Our results will not only serve as benchmark for traditional models, but more importantly provide an experimentally accessible quantity in the form of the electrical conductivity.



rate research

Read More

We briefly review analytic approximations of thermodynamic functions of fully ionized nonideal electron-ion plasmas, applicable in a wide range of plasma parameters, including the domains of nondegenerate and degenerate, nonrelativistic and relativistic electrons, weakly and strongly coupled Coulomb liquids, classical and quantum Coulomb crystals. We present improvements to previously published approximations. Our code for calculation of thermodynamic functions based on the reviewed approximations is made publicly available.
We study magnetic reconnection events in a turbulent plasma within the two-fluid theory. By identifying the diffusive regions, we measure the reconnection rates as function of the conductivity and current sheet thickness. We have found that the reconnection rate scales as the squared of the inverse of the current sheets thickness and is independent of the aspect ratio of the diffusive region, in contrast to other analytical, e.g. the Sweet-Parker and Petscheck, and numerical models. Furthermore, while the reconnection rates are also proportional to the square inverse of the conductivity, the aspect ratios of the diffusive regions, which exhibit values in the range of $0.1-0.9$, are not correlated to the latter. Our findings suggest a new expression for the magnetic reconnection rate, which, after experimental verification, can provide a further understanding of the magnetic reconnection process.
68 - Rui Jin 2021
The advent of x-ray free-electron lasers (XFELs), which provide intense ultrashort x-ray pulses, has brought a new way of creating and analyzing hot and warm dense plasmas in the laboratory. Because of the ultrashort pulse duration, the XFEL-produced plasma will be out of equilibrium at the beginning and even the electronic subsystem may not reach thermal equilibrium while interacting with a femtosecond time-scale pulse. In the dense plasma, the ionization potential depression (IPD) induced by the plasma environment plays a crucial role for understanding and modeling microscopic dynamical processes. However, all theoretical approaches for IPD have been based on local thermal equilibrium (LTE) and it has been controversial to use LTE IPD models for the nonthermal situation. In this work, we propose a non-LTE (NLTE) approach to calculate the IPD effect by combining a quantum-mechanical electronic-structure calculation and a classical molecular dynamics simulation. This hybrid approach enables us to investigate the time evolution of ionization potentials and IPDs during and after the interaction with XFEL pulses, without the limitation of the LTE assumption. In our NLTE approach, the transient IPD values are presented as distributions evolving with time, which cannot be captured by conventional LTE-based models. The time-integrated ionization potential values are in good agreement with benchmark experimental data on solid-density aluminum plasma and other theoretical predictions based on LTE. The present work is promising to provide critical insights into nonequilibrium dynamics of dense plasma formation and thermalization induced by XFEL pulses.
We study the thermodynamics of bromophenyl functionalization of carbon nanotubes with respect to diameter and metallic/insulating character using density-functional theory (DFT). On one hand, we show that the activation energy for the grafting of a bromophenyl molecule onto a semiconducting zigzag nanotube ranges from 0.73 eV to 0.76 eV without any clear trend with respect to diameter within numerical accuracy. On the other hand, the binding energy of a single bromophenyl molecule shows a clear diameter dependence and ranges from 1.51 eV for a (8,0) zigzag nanotube to 0.83 eV for a (20,0) zigzag nanotube. This is in part explained by the transition from sp2 to sp3 bonding occurring to a carbon atom of a nanotube when a phenyl is grafted to it and the fact that smaller nanotubes are closer to a sp3 hybridization than larger ones due to increased curvature. Since a second bromophenyl unit can attach without energy barrier next to an isolated grafted unit, they are assumed to exist in pairs. The para configuration is found to be favored for the pairs and their binding energy decreases with increasing diameter, ranging from 4.34 eV for a (7,0) nanotube to 2.27 eV for a (29,0) nanotube. An analytic form for this radius dependence is derived using a tight binding hamiltonian and first order perturbation theory. The 1/R^2 dependance obtained (where R is the nanotube radius) is verified by our DFT results within numerical accuracy. Finally, metallic nanotubes are found to be more reactive than semiconducting nanotubes, a feature that can be explained by a non-zero density of states at the Fermi level for metallic nanotubes.
The equation of state (EOS) for partially ionized carbon, oxygen, and carbon-oxygen mixtures at temperatures 3times10^5 K <~ T <~ 3times10^6 K is calculated over a wide range of densities, using the method of free energy minimization in the framework of the chemical picture of plasmas. The free energy model is an improved extension of our model previously developed for pure carbon (Phys. Rev. E, 72, 046402; arXiv:physics/0510006). The internal partition functions of bound species are calculated by a self-consistent treatment of each ionization stage in the plasma environment taking into account pressure ionization. The long-range Coulomb interactions between ions and screening of the ions by free electrons are included using our previously published analytical model, recently improved, in particular for the case of mixtures. We also propose a simple but accurate method of calculation of the EOS of partially ionized binary mixtures based on detailed ionization balance calculations for pure substances.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا