Do you want to publish a course? Click here

Hybrid Attention for Automatic Segmentation of Whole Fetal Head in Prenatal Ultrasound Volumes

103   0   0.0 ( 0 )
 Added by Xin Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Background and Objective: Biometric measurements of fetal head are important indicators for maternal and fetal health monitoring during pregnancy. 3D ultrasound (US) has unique advantages over 2D scan in covering the whole fetal head and may promote the diagnoses. However, automatically segmenting the whole fetal head in US volumes still pends as an emerging and unsolved problem. The challenges that automated solutions need to tackle include the poor image quality, boundary ambiguity, long-span occlusion, and the appearance variability across different fetal poses and gestational ages. In this paper, we propose the first fully-automated solution to segment the whole fetal head in US volumes. Methods: The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture. We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features in a composite and hierarchical way. With little computation overhead, HAS proves to be effective in addressing boundary ambiguity and deficiency. To enhance the spatial consistency in segmentation, we further organize multiple segmentors in a cascaded fashion to refine the results by revisiting context in the prediction of predecessors. Results: Validated on a large dataset collected from 100 healthy volunteers, our method presents superior segmentation performance (DSC (Dice Similarity Coefficient), 96.05%), remarkable agreements with experts. With another 156 volumes collected from 52 volunteers, we ahieve high reproducibilities (mean standard deviation 11.524 mL) against scan variations. Conclusion: This is the first investigation about whole fetal head segmentation in 3D US. Our method is promising to be a feasible solution in assisting the volumetric US-based prenatal studies.

rate research

Read More

To improve the performance of most neuroimiage analysis pipelines, brain extraction is used as a fundamental first step in the image processing. But in the case of fetal brain development, there is a need for a reliable US-specific tool. In this work we propose a fully automated 3D CNN approach to fetal brain extraction from 3D US clinical volumes with minimal preprocessing. Our method accurately and reliably extracts the brain regardless of the large data variation inherent in this imaging modality. It also performs consistently throughout a gestational age range between 14 and 31 weeks, regardless of the pose variation of the subject, the scale, and even partial feature-obstruction in the image, outperforming all current alternatives.
In radiotherapy planning, manual contouring is labor-intensive and time-consuming. Accurate and robust automated segmentation models improve the efficiency and treatment outcome. We aim to develop a novel hybrid deep learning approach, combining convolutional neural networks (CNNs) and the self-attention mechanism, for rapid and accurate multi-organ segmentation on head and neck computed tomography (CT) images. Head and neck CT images with manual contours of 115 patients were retrospectively collected and used. We set the training/validation/testing ratio to 81/9/25 and used the 10-fold cross-validation strategy to select the best model parameters. The proposed hybrid model segmented ten organs-at-risk (OARs) altogether for each case. The performance of the model was evaluated by three metrics, i.e., the Dice Similarity Coefficient (DSC), Hausdorff distance 95% (HD95), and mean surface distance (MSD). We also tested the performance of the model on the Head and Neck 2015 challenge dataset and compared it against several state-of-the-art automated segmentation algorithms. The proposed method generated contours that closely resemble the ground truth for ten OARs. Our results of the new Weaving Attention U-net demonstrate superior or similar performance on the segmentation of head and neck CT images.
Colonoscopy is the gold standard for examination and detection of colorectal polyps. Localization and delineation of polyps can play a vital role in treatment (e.g., surgical planning) and prognostic decision making. Polyp segmentation can provide detailed boundary information for clinical analysis. Convolutional neural networks have improved the performance in colonoscopy. However, polyps usually possess various challenges, such as intra-and inter-class variation and noise. While manual labeling for polyp assessment requires time from experts and is prone to human error (e.g., missed lesions), an automated, accurate, and fast segmentation can improve the quality of delineated lesion boundaries and reduce missed rate. The Endotect challenge provides an opportunity to benchmark computer vision methods by training on the publicly available Hyperkvasir and testing on a separate unseen dataset. In this paper, we propose a novel architecture called ``DDANet based on a dual decoder attention network. Our experiments demonstrate that the model trained on the Kvasir-SEG dataset and tested on an unseen dataset achieves a dice coefficient of 0.7874, mIoU of 0.7010, recall of 0.7987, and a precision of 0.8577, demonstrating the generalization ability of our model.
Prenatal screening with ultrasound can lower neonatal mortality significantly for selected cardiac abnormalities. However, the need for human expertise, coupled with the high volume of screening cases, limits the practically achievable detection rates. In this paper we discuss the potential for deep learning techniques to aid in the detection of congenital heart disease (CHD) in fetal ultrasound. We propose a pipeline for automated data curation and classification. During both training and inference, we exploit an auxiliary view classification task to bias features toward relevant cardiac structures. This bias helps to improve in F1-scores from 0.72 and 0.77 to 0.87 and 0.85 for healthy and CHD classes respectively.
Objective: The spinous process angle (SPA) is one of the essential parameters to denote three-dimensional (3-D) deformity of spine. We propose an automatic segmentation method based on Stacked Hourglass Network (SHN) to detect the spinous processes (SP) on ultrasound (US) spine images and to measure the SPAs of clinical scoliotic subjects. Methods: The network was trained to detect vertebral SP and laminae as five landmarks on 1200 ultrasound transverse images and validated on 100 images. All the processed transverse images with highlighted SP and laminae were reconstructed into a 3D image volume, and the SPAs were measured on the projected coronal images. The trained network was tested on 400 images by calculating the percentage of correct keypoints (PCK); and the SPA measurements were evaluated on 50 scoliotic subjects by comparing the results from US images and radiographs. Results: The trained network achieved a high average PCK (86.8%) on the test datasets, particularly the PCK of SP detection was 90.3%. The SPAs measured from US and radiographic methods showed good correlation (r>0.85), and the mean absolute differences (MAD) between two modalities were 3.3{deg}, which was less than the clinical acceptance error (5{deg}). Conclusion: The vertebral features can be accurately segmented on US spine images using SHN, and the measurement results of SPA from US data was comparable to the gold standard from radiography.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا