We present simulation results on the properties of packings of frictionless spherocylindrical particles. Starting from a random distribution of particles in space, a packing is produced by minimizing the potential energy of inter-particle contacts until a force-equilibrated state is reached. For different particle aspect ratios $alpha=10ldots 40$, we calculate contacts $z$, pressure as well as bulk and shear modulus. Most important is the fraction $f_0$ of spherocylinders with contacts at both ends as it governs the jamming threshold $z_c(f_0)=8+2f_0$. These results highlight the important role of the axial sliding degree of freedom of a spherocylinder, which is a zero-energy mode but only if no end-contacts are present.