No Arabic abstract
We consider a nonlocal semi-linear parabolic equation on a connected exterior domain of the form $mathbb{R}^Nsetminus K$, where $Ksubsetmathbb{R}^N$ is a compact obstacle. The model we study is motivated by applications in biology and takes into account long range dispersal events that may be anisotropic depending on how a given population perceives the environment. To formulate this in a meaningful manner, we introduce a new theoretical framework which is of both mathematical and biological interest. The main goal of this paper is to construct an entire solution that behaves like a planar travelling wave as $tto-infty$ and to study how this solution propagates depending on the shape of the obstacle. We show that whether the solution recovers the shape of a planar front in the large time limit is equivalent to whether a certain Liouville type property is satisfied. We study the validity of this Liouville type property and we extend some previous results of Hamel, Valdinoci and the authors. Lastly, we show that the entire solution is a generalised transition front.
This paper is concerned with a model for the dynamics of a single species in a one-dimensional heterogeneous environment. The environment consists of two kinds of patches, which are periodically alternately arranged along the spatial axis. We first establish the well-posedness for the Cauchy problem. Next, we give existence and uniqueness results for the positive steady state and we analyze the long-time behavior of the solutions to the evolution problem. Afterwards, based on dynamical systems methods, we investigate the spreading properties and the existence of pulsating traveling waves in the positive and negative directions. It is shown that the asymptotic spreading speed, c * , exists and coincides with the minimal wave speed of pulsating traveling waves in positive and negative directions. In particular, we give a variational formula for c * by using the principal eigenvalues of certain linear periodic eigenvalue problems.
A reaction-diffusion problem with an obstacle potential is considered in a bounded domain of $R^N$. Under the assumption that the obstacle $K$ is a closed convex and bounded subset of $mathbb{R}^n$ with smooth boundary or it is a closed $n$-dimensional simplex, we prove that the long-time behavior of the solution semigroup associated with this problem can be described in terms of an exponential attractor. In particular, the latter means that the fractal dimension of the associated global attractor is also finite.
We study a class of free boundary systems with nonlocal diffusion, which are natural extensions of the corresponding free boundary problems of reaction diffusion systems. As before the free boundary represents the spreading front of the species, but here the population dispersal is described by nonlocal diffusion instead of local diffusion. We prove that such a nonlocal diffusion problem with free boundary has a unique global solution, and for models with Lotka-Volterra type competition or predator-prey growth terms, we show that a spreading-vanishing dichotomy holds, and obtain criteria for spreading and vanishing; moreover, for the weak competition case and for the weak predation case, we can determine the long-time asymptotic limit of the solution when spreading happens. Compared with the single species free boundary model with nonlocal diffusion considered recently in cite{CDLL}, and the two species cases with local diffusion extensively studied in the literature, the situation considered in this paper involves several extra difficulties, which are overcome by the use of some new techniques.
We investigate a class of systems of partial differential equations with nonlinear cross-diffusion and nonlocal interactions, which are of interest in several contexts in social sciences, finance, biology, and real world applications. Assuming a uniform coerciveness assumption on the diffusion part, which allows to consider a large class of systems with degenerate cross-diffusion (i.e. of porous medium type) and relaxes sets of assumptions previously considered in the literature, we prove global-in-time existence of weak solutions by means of a semi-implicit version of the Jordan-Kinderlehrer-Otto scheme. Our approach allows to consider nonlocal interaction terms not necessarily yielding a formal gradient flow structure.
We study the Riemannian distance function from a fixed point (a point-wise target) of Euclidean space in the presence of a compact obstacle bounded by a smooth hypersurface. First, we show that such a function is locally semiconcave with a fractional modulus of order one half and that, near the obstacle, this regularity is optimal. Then, in the Euclidean setting, we show that the distance function is everywhere differentiable (except for the point-wise target) if and only if no obstacle is present. Finally, we prove that all the singular points of the distance function are not isolated, in the sense that each singularity belongs to a nontrivial continuum of singular points.