No Arabic abstract
Modelling the low ionization lines (LIL) in active galactic nuclei still faces problems in explaining the observed equivalent widths (EWs). We examine the optical Fe II and near-infrared Ca II triplet (CaT) emission strengths using the photoionization code CLOUDY. Using an incident continuum for I Zw 1 - a prototypical Type-1 narrow-line Seyfert galaxy, we can recover the line ratios for the optical Fe II (i.e. R$_{rm{Fe II}}$) and the NIR CaT (i.e. R$_{rm{CaT}}$) in agreement to the observed estimates. Although, the pairs of (U,$rm{n_{H}}$) that reproduce the conforming line ratios, unfortunately, do not relate to agreeable line EWs. We thus propose that the LIL region of the BLR cloud doesnt see the same continuum seen by a distant observer that is emanated from the accretion disk, rather it sees a filtered version of the original continuum. The assumption of the filtered continuum as the source of BLR irradiation recovers realistic EWs for LIL species. However, our study finds that to account for the adequate R$_{rm{Fe II}}$ (Fe II/H$beta$ flux ratio) emission, the BLR needs to be selectively overabundant in iron. On the other hand, the R$_{rm{CaT}}$ (CaT/H$beta$ flux ratio) emission spans a broader range from solar to super-solar metallicities. In all these models the BLR cloud density is found to be consistent with our conclusions from prior works, i.e. $rm{n_{H}} sim 10^{12}$ cm$^{-3}$. An interesting result obtained here is the reduction in the value of the metallicity by up to a factor 10 for the R$_{rm{Fe II}}$ cases when the microturbulence is invoked, suggesting that microturbulence can act as an apparent metallicity controller for the Fe II. On the contrary, the R$_{rm{CaT}}$ cases are rather unaffected by the effect of microturbulence.
Optical Fe II emission is a strong feature in quasar spectra originating in the broad-line region (BLR). The difficulty in understanding the complex Fe II pseudo-continuum has led us to search for other reliable, simpler ionic species such as Ca II. In this first part of the series, we confirm the strong correlation between the strengths of two emission features, the optical Fe II and the NIR Ca II, both from observations and photoionization modelling. With the inclusion of an up-to-date compilation of observations with both optical Fe II and NIR Ca II measurements, we span a wider and more extended parameter space and confirm the common origin of these two spectral features with our photoionization models using CLOUDY. Taking into account the effect of dust into our modelling, we constrain the BLR parameter space (primarily, in terms of the ionization parameter and local cloud density) as a function of the strengths of Fe II and Ca II emission.
In this second paper in the series, we carefully analyze the observational properties of the optical FeII and NIR CaII triplet in Active Galactic Nuclei, as well as the luminosity, black hole mass, and Eddington ratio in order to define the driving mechanism behind the properties of our sample. The CaII shows an inverse Baldwin effect, bringing out the particular behavior of this ion with respect to the other low-ionization lines such as H$beta$. We performed a Principal Component Analysis, where 81.2% of the variance can be explained by the first three principal components drawn from the FWHMs, luminosity, and equivalent widths. The first principal component (PC1) is primarily driven by the combination of black hole mass and luminosity with a significance over 99.9%, which in turn is reflected in the strong correlation of the PC1 with the Eddington ratio. The observational correlations are better represented by the Eddington ratio, thus it could be the primary mechanism behind the strong correlations observed in the CaII-FeII sample. Since calcium belongs to the $alpha$-elements, the FeII/CaII flux ratio can be used as a chemical clock for determining the metal content in AGN and trace the evolution of the host galaxies. We confirm the de-enhancement of the ratio FeII/CaII by the Eddington ratio, suggesting a metal enrichment of the BLR in intermediate-$z$ with respect to low-$z$ objects. A larger sample, particularly at $z$>2, is needed to confirm the present results.
We extend our previous calibration of the infrared Ca II triplet as metallicity indicator to the metal-poor regime by including observations of 55 field stars with [Fe/H] down to -4.0 dex. While we previously solved the saturation at high-metallicity using a combination of a Lorentzian plus a Gaussian to reproduce the line profiles, in this paper we address the non-linearity at low-metallicity following the suggestion of Starkenburg et al 2010 of adding two non-linear terms to the relation among the [Fe/H], luminosity, and strength of the Calcium triplet lines. Our calibration thus extends from -4.0 to +0.5 in metallicity and is presented using four different luminosity indicators: V-V_{HB}, M_V, M_I, and M_K. The calibration obtained in this paper results in a tight correlation between [Fe/H] abundances measured from high resolution spectra and [Fe/H] values derived from the CaT, over the whole metallicity range covered.
(ABRIDGED) Context. The line strength of the Ca II triplet (CaT) lines are a proxy to measure metallicity from individual stellar spectra of bright red giant stars. It is a mandatory step to remove the magnitude (proxy for gravity, temperature and luminosity) dependence from the equivalent width (EW) of the lines before converting them into metallicities. The working empirical procedure used for decades is to use the relative magnitude with respect to the horizontal branch level. Aims. The V filter is broadly adopted as the reference magnitude, although a few works have used different filters (I and Ks, for example). In this work we investigate the dependence of the CaT calibration using griz filters from the DECam and the GMOS, G from Gaia, BVI filters from the MCPS, YJKs filters from VIRCAM. We use as a reference FORS2 V filter used in the original analysis of the sample. Methods. Red giant stars from clusters with known metallicity and available CaT equivalent widths are used as reference. Public photometric catalogues are taken from SMASH DR2, VMC, Gaia, MCPS surveys plus VISCACHA-GMOS data, for a selection of Small Magellanic Cloud clusters. The slopes are fitted using two and three lines to be applicable to most of the metallicity scales. Results. The magnitude dependence of the CaT EWs is well described by a linear relation using any filter analysed in this work. The slope increases with wavelength of the filters. The zero point (a.k.a. reduced equivalent width), that is the metallicity indicator, remains the same. Conclusions. If the same line profile function is used with the same bandpasses and continuum regions, and the total EW comes from the same number of lines (2 or 3), then the reduced EW is the same regardless the filter used. Therefore, any filter can be used to convert the CaT equivalent widths into metallicity for a given CaT calibration.
We present a long-exposure (~10 hr) image of the supernova (SN) remnant Cassiopeia A (Cas A) obtained with the UKIRT 3.8-m telescope using a narrow band filter centered at 1.644 um emission. The passband contains [Fe II] 1.644 um and [Si I] 1.645 um lines, and our `deep [Fe II]+[Si I] image provides an unprecedented panoramic view of Cas A, showing both shocked and unshocked SN ejecta together with shocked circumstellar medium at subarcsec (~0.7 arcsec or 0.012 pc) resolution. The diffuse emission from the unshocked SN ejecta has a form of clumps, filaments, and arcs, and their spatial distribution correlates well with that of the Spitzer [Si II] infrared emission, suggesting that the emission is likely due to [Si I] line not [Fe II] line as in shocked material. The structure of the optically-invisible western area of Cas A is clearly seen for the first time. The area is filled with many Quasi-Stationary Flocculi (QSFs) and fragments of the disrupted ejecta shell. We suggest that the anomalous radio properties in this area could be due to the increased number of such dense clumps. We identified 309 knots in the deep [Fe II]+[Si I] image and classified them into QSFs and fast-moving knots (FMKs). The total H+He mass of QSFs is ~0.23 Msun, implying that the mass fraction of dense clumps in the progenitors red-supergiant wind is 4--13%. The spatial distribution of QSFs suggests that there had been a highly asymmetric mass loss $10^4$--$10^5$ yr before the SN explosion. The mass of the [Fe II] line-emitting, shocked dense Fe ejecta is ~3x$10^{-5}$ Msun. The comparison with the ionic S-line dominated Hubble Space Telescope WFC3/IR image suggests that the outermost FMKs in the southeastern area are Fe-rich.