Multi-object operational tasks for convex quantum resource theories


Abstract in English

The prevalent modus operandi within the framework of quantum resource theories has been to characterise and harness the resources within single objects, in what we can call emph{single-object} quantum resource theories. One can wonder however, whether the resources contained within multiple different types of objects, now in a emph{multi-object} quantum resource theory, can simultaneously be exploited for the benefit of an operational task. In this work, we introduce examples of such multi-object operational tasks in the form of subchannel discrimination and subchannel exclusion games, in which the player harnesses the resources contained within a state-measurement pair. We prove that for any state-measurement pair in which either of them is resourceful, there exist discrimination and exclusion games for which such a pair outperforms any possible free state-measurement pair. These results hold for arbitrary convex resources of states, and arbitrary convex resources of measurements for which classical post-processing is a free operation. Furthermore, we prove that the advantage in these multi-object operational tasks is determined, in a multiplicative manner, by the resource quantifiers of: emph{generalised robustness of resource} of both state and measurement for discrimination games and emph{weight of resource} of both state and measurement for exclusion games.

Download