No Arabic abstract
Recent works have achieved great success in improving the performance of multiple computer vision tasks by capturing features with a high channel number utilizing deep neural networks. However, many channels of extracted features are not discriminative and contain a lot of redundant information. In this paper, we address above issue by introducing the Distance Guided Channel Weighting (DGCW) Module. The DGCW module is constructed in a pixel-wise context extraction manner, which enhances the discriminativeness of features by weighting different channels of each pixels feature vector when modeling its relationship with other pixels. It can make full use of the high-discriminative information while ignore the low-discriminative information containing in feature maps, as well as capture the long-range dependencies. Furthermore, by incorporating the DGCW module with a baseline segmentation network, we propose the Distance Guided Channel Weighting Network (DGCWNet). We conduct extensive experiments to demonstrate the effectiveness of DGCWNet. In particular, it achieves 81.6% mIoU on Cityscapes with only fine annotated data for training, and also gains satisfactory performance on another two semantic segmentation datasets, i.e. Pascal Context and ADE20K. Code will be available soon at https://github.com/LanyunZhu/DGCWNet.
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated convolutions in the backbone networks to extract high-resolution feature maps for achieving high-performance segmentation performance. However, due to many convolution operations are conducted on the high-resolution feature maps, such dilatedFCN-based methods result in large computational complexity and memory consumption. To balance the performance and efficiency, there also exist encoder-decoder structures that gradually recover the spatial information by combining multi-level feature maps from the encoder. However, the performances of existing encoder-decoder methods are far from comparable with the dilatedFCN-based methods. In this paper, we propose the EfficientFCN, whose backbone is a common ImageNet pre-trained network without any dilated convolution. A holistically-guided decoder is introduced to obtain the high-resolution semantic-rich feature maps via the multi-scale features from the encoder. The decoding task is converted to novel codebook generation and codeword assembly task, which takes advantages of the high-level and low-level features from the encoder. Such a framework achieves comparable or even better performance than state-of-the-art methods with only 1/3 of the computational cost. Extensive experiments on PASCAL Context, PASCAL VOC, ADE20K validate the effectiveness of the proposed EfficientFCN.
The way features propagate in Fully Convolutional Networks is of momentous importance to capture multi-scale contexts for obtaining precise segmentation masks. This paper proposes a novel series-parallel hybrid paradigm called the Chained Context Aggregation Module (CAM) to diversify feature propagation. CAM gains features of various spatial scales through chain-connected ladder-style information flows and fuses them in a two-stage process, namely pre-fusion and re-fusion. The serial flow continuously increases receptive fields of output neurons and those in parallel encode different region-based contexts. Each information flow is a shallow encoder-decoder with appropriate down-sampling scales to sufficiently capture contextual information. We further adopt an attention model in CAM to guide feature re-fusion. Based on these developments, we construct the Chained Context Aggregation Network (CANet), which employs an asymmetric decoder to recover precise spatial details of prediction maps. We conduct extensive experiments on six challenging datasets, including Pascal VOC 2012, Pascal Context, Cityscapes, CamVid, SUN-RGBD and GATECH. Results evidence that CANet achieves state-of-the-art performance.
Contrastive learning has shown superior performance in embedding global and spatial invariant features in computer vision (e.g., image classification). However, its overall success of embedding local and spatial variant features is still limited, especially for semantic segmentation. In a per-pixel prediction task, more than one label can exist in a single image for segmentation (e.g., an image contains both cat, dog, and grass), thereby it is difficult to define positive or negative pairs in a canonical contrastive learning setting. In this paper, we propose an attention-guided supervised contrastive learning approach to highlight a single semantic object every time as the target. With our design, the same image can be embedded to different semantic clusters with semantic attention (i.e., coerce semantic masks) as an additional input channel. To achieve such attention, a novel two-stage training strategy is presented. We evaluate the proposed method on multi-organ medical image segmentation task, as our major task, with both in-house data and BTCV 2015 datasets. Comparing with the supervised and semi-supervised training state-of-the-art in the backbone of ResNet-50, our proposed pipeline yields substantial improvement of 5.53% and 6.09% in Dice score for both medical image segmentation cohorts respectively. The performance of the proposed method on natural images is assessed via PASCAL VOC 2012 dataset, and achieves 2.75% substantial improvement.
Pixel-wise clean annotation is necessary for fully-supervised semantic segmentation, which is laborious and expensive to obtain. In this paper, we propose a weakly supervised 2D semantic segmentation model by incorporating sparse bounding box labels with available 3D information, which is much easier to obtain with advanced sensors. We manually labeled a subset of the 2D-3D Semantics(2D-3D-S) dataset with bounding boxes, and introduce our 2D-3D inference module to generate accurate pixel-wise segment proposal masks. Guided by 3D information, we first generate a point cloud of objects and calculate objectness probability score for each point. Then we project the point cloud with objectness probabilities back to 2D images followed by a refinement step to obtain segment proposals, which are treated as pseudo labels to train a semantic segmentation network. Our method works in a recursive manner to gradually refine the above-mentioned segment proposals. Extensive experimental results on the 2D-3D-S dataset show that the proposed method can generate accurate segment proposals when bounding box labels are available on only a small subset of training images. Performance comparison with recent state-of-the-art methods further illustrates the effectiveness of our method.
Spatial and channel attentions, modelling the semantic interdependencies in spatial and channel dimensions respectively, have recently been widely used for semantic segmentation. However, computing spatial and channel attentions separately sometimes causes errors, especially for those difficult cases. In this paper, we propose Channelized Axial Attention (CAA) to seamlessly integrate channel attention and spatial attention into a single operation with negligible computation overhead. Specifically, we break down the dot-product operation of the spatial attention into two parts and insert channel relation in between, allowing for independently optimized channel attention on each spatial location. We further develop grouped vectorization, which allows our model to run with very little memory consumption without slowing down the running speed. Comparative experiments conducted on multiple benchmark datasets, including Cityscapes, PASCAL Context, and COCO-Stuff, demonstrate that our CAA outperforms many state-of-the-art segmentation models (including dual attention) on all tested datasets.