Do you want to publish a course? Click here

Approximate Solutions to the Klein-Fock-Gordon Equation for the sum of Coulomb and Ring-Shaped like potentials

156   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider the quantum mechanical problem of the motion of a spinless charged relativistic particle with mass$M$, described by the Klein-Fock-Gordon equation with equal scalar $S(vec{r})$ and vector $V(vec{r})$ Coulomb plus ring-shaped potentials. It is shown that the system under consideration has both a discrete at $left|Eright|<Mc^{2} $ and a continuous at $left|Eright|>Mc^{2} $ energy spectra. We find the analytical expressions for the corresponding complete wave functions. A dynamical symmetry group $SU(1,1)$ for the radial wave equation of motion is constructed. The algebra of generators of this group makes it possible to find energy spectra in a purely algebraic way. It is also shown that relativistic expressions for wave functions, energy spectra and group generators in the limit $cto infty $ go over into the corresponding expressions for the nonrelativistic problem.



rate research

Read More

We point out a misleading treatment in the literature regarding to bound-state solutions for the $s$-wave Klein-Gordon equation with exponential scalar and vector potentials. Following the appropriate procedure for an arbitrary mixing of scalar and vector couplings, we generalize earlier works and present the correct solution to bound states and additionally we address the issue of scattering states. Moreover, we present a new effect related to the polarization of the charge density in the presence of weak short-range exponential scalar and vector potentials.
The Klein-Gordon equation is solved approximately for the Hulth{e}n potential for any angular momentum quantum number $ell$ with the position-dependent mass. Solutions are obtained reducing the Klein-Gordon equation into a Schr{o}dinger-like differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get an energy eigenvalue and and the wave functions. It is found that the results in the case of constant mass are in good agreement with the ones obtained in the literature.
We present a new axially symmetric monochromatic free-space solution to the Klein-Gordon equation propagating with a superluminal group velocity and show that it gives rise to an imaginary part of the causal propagator outside the light cone. We address the question about causality of the spacelike paths and argue that the signal with a well-defined wavefront formed by the superluminal modes would propagate in vacuum with the light speed.
150 - Madalina Boca 2011
We present an elementary proof based on a direct calculation of the property of completeness at constant time of the solutions of the Klein-Gordon equation for a charged particle in a plane wave electromagnetic field. We also review different forms of the orthogonality and completeness relations previously presented in the literature and we discuss the possibility to construct the Feynman propagator for the particle in a plane-wave laser pulse as an expansion in terms of Volkov solutions. We show that this leads to a rigorous justification for the expression of the transition amplitude, currently used in the literature, for a class of laser assisted or laser induced processes.
New exact analytical bound-state solutions of the D-dimensional Klein-Gordon equation for a large set of couplings and potential functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional generalized Morse potential. The eigenfunctions are expressed in terms of generalized Laguerre polynomials, and the eigenenergies are expressed in terms of solutions of irrational equations at the worst. Several analytical results found in the literature, including the so-called Klein-Gordon oscillator, are obtained as particular cases of this unified approach
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا