Do you want to publish a course? Click here

Randomized Partial Decoupling Unifies One-Shot Quantum Channel Capacities

130   0   0.0 ( 0 )
 Added by Eyuri Wakakuwa
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze a task in which classical and quantum messages are simultaneously communicated via a noisy quantum channel, assisted with a limited amount of shared entanglement. We derive the direct and converse bounds for the one-shot capacity region. The bounds are represented in terms of the smooth conditional entropies and the error tolerance, and coincide in the asymptotic limit of infinitely many uses of the channel. The direct and converse bounds for various communication tasks are obtained as corollaries, both for one-shot and asymptotic scenarios. The proof is based on the randomized partial decoupling theorem, which is a generalization of the decoupling theorem. Thereby we provide a unified decoupling approach to the one-shot quantum channel coding, by fully incorporating classical communication, quantum communication and shared entanglement.



rate research

Read More

We introduce a task that we call partial decoupling, in which a bipartite quantum state is transformed by a unitary operation on one of the two subsystems and then is subject to the action of a quantum channel. We assume that the subsystem is decomposed into a direct-sum-product form, which often appears in the context of quantum information theory. The unitary is chosen at random from the set of unitaries having a simple form under the decomposition. The goal of the task is to make the final state, for typical choices of the unitary, close to the averaged final state over the unitaries. We consider a one-shot scenario, and derive upper and lower bounds on the average distance between the two states. The bounds are represented simply in terms of smooth conditional entropies of quantum states involving the initial state, the channel and the decomposition. Thereby we provide generalizations of the one-shot decoupling theorem. The obtained result would lead to further development of the decoupling approaches in quantum information theory and fundamental physics.
We introduce a probabilistic version of the one-shot quantum dense coding protocol in both two- and multiport scenarios, and refer to it as conclusive quantum dense coding. Specifically, we analyze the corresponding capacities of two-qubit, two-qutrit, and three-qubit shared states. We identify cases where Pauli and generalized Pauli operators are not sufficient as encoders to attain the optimal one-shot conclusive quantum dense coding capacities. We find that there is a rich connection between the capacities, and the bipartite and multipartite entanglements of the shared state.
The capacity of noisy quantum channels characterizes the highest rate at which information can be reliably transmitted and it is therefore of practical as well as fundamental importance. Capacities of classical channels are computed using alternating optimization schemes, called Blahut-Arimoto algorithms. In this work, we generalize classical Blahut-Arimoto algorithms to the quantum setting. In particular, we give efficient iterative schemes to compute the capacity of channels with classical input and quantum output, the quantum capacity of less noisy channels, the thermodynamic capacity of quantum channels, as well as the entanglement-assisted capacity of quantum channels. We give rigorous a priori and a posteriori bounds on the estimation error by employing quantum entropy inequalities and demonstrate fast convergence of our algorithms in numerical experiments.
Communication over a noisy channel is often conducted in a setting in which different input symbols to the channel incur a certain cost. For example, for bosonic quantum channels, the cost associated with an input state is the number of photons, which is proportional to the energy consumed. In such a setting, it is often useful to know the maximum amount of information that can be reliably transmitted per cost incurred. This is known as the capacity per unit cost. In this paper, we generalize the capacity per unit cost to various communication tasks involving a quantum channel such as classical communication, entanglement-assisted classical communication, private communication, and quantum communication. For each task, we define the corresponding capacity per unit cost and derive a formula for it analogous to that of the usual capacity. Furthermore, for the special and natural case in which there is a zero-cost state, we obtain expressions in terms of an optimized relative entropy involving the zero-cost state. For each communication task, we construct an explicit pulse-position-modulation coding scheme that achieves the capacity per unit cost. Finally, we compute capacities per unit cost for various bosonic Gaussian channels and introduce the notion of a blocklength constraint as a proposed solution to the long-standing issue of infinite capacities per unit cost. This motivates the idea of a blocklength-cost duality, on which we elaborate in depth.
In this work, we prove a novel one-shot multi-sender decoupling theorem generalising Dupuis result. We start off with a multipartite quantum state, say on A1 A2 R, where A1, A2 are treated as the two sender systems and R is the reference system. We apply independent Haar random unitaries in tensor product on A1 and A2 and then send the resulting systems through a quantum channel. We want the channel output B to be almost in tensor with the untouched reference R. Our main result shows that this is indeed the case if suitable entropic conditions are met. An immediate application of our main result is to obtain a one-shot simultaneous decoder for sending quantum information over a k-sender entanglement unassisted quantum multiple access channel (QMAC). The rate region achieved by this decoder is the natural one-shot quantum analogue of the pentagonal classical rate region. Assuming a simultaneous smoothing conjecture, this one-shot rate region approaches the optimal rate region of Yard, Dein the asymptotic iid limit. Our work is the first one to obtain a non-trivial simultaneous decoder for the QMAC with limited entanglement assistance in both one-shot and asymptotic iid settings; previous works used unlimited entanglement assistance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا