No Arabic abstract
We investigate the potential for the James Webb Space Telescope (JWST) to detect and characterize the atmospheres of the sub-Neptunian exoplanets in the TOI-270 system. Sub-Neptunes are considered more likely to be water worlds than gas dwarfs. We model their atmospheres using three atmospheric compositions - two examples of hydrogen-dominated atmospheres and a water-dominated atmosphere. We then simulate the infrared transmission spectra of these atmospheres for JWST instrument modes optimized for transit observation of exoplanet atmospheres : NIRISS, NIRSpec and MIRI. We then predict the observability of each exoplanets atmosphere. TOI-270c and d are excellent targets for detecting atmospheres with JWST transmission spectroscopy, requiring only 1 transit observation with NIRISS, NIRSpec and MIRI; higher signal-to-noise (SNR) can be obtained for a clear H-rich atmosphere. Fewer than 3 transits with NIRISS and NIRSpec may be enough to reveal molecular features. Water-dominated atmospheres require more transits. Water spectral features in water-dominated atmospheres may be detectable with NIRISS in 2 or 3 transits. We find that the detection of spectral features in a cloudy, H-rich atmosphere does not require integrations as long as those required for the water-dominated atmosphere, which is consistent with the differences in atmospheric mean molecular weight. TOI-270c and d could be prime targets for JWST transit observations of sub-Neptune atmospheres. These results provide useful predictions for observers who may propose to use JWST to detect and characterize the TOI-270 planet atmospheres.
In this paper we report the discovery of TOI-220 $b$, a new sub-Neptune detected by the Transiting Exoplanet Survey Satellite (TESS) and confirmed by radial velocity follow-up observations with the HARPS spectrograph. Based on the combined analysis of TESS transit photometry and high precision radial velocity measurements we estimate a planetary mass of 13.8 $pm$ 1.0 M$_{Earth}$ and radius of 3.03 $pm$ 0.15 R$_{Earth}$, implying a bulk density of 2.73 $pm$ 0.47 $textrm{g cm}^{-3}$. TOI-220 $b$ orbits a relative bright (V=10.4) and old (10.1$pm$1.4 Gyr) K dwarf star with a period of $sim$10.69 d. Thus, TOI-220 $b$ is a new warm sub-Neptune with very precise mass and radius determinations. A Bayesian analysis of the TOI-220 $b$ internal structure indicates that due to the strong irradiation it receives, the low density of this planet could be explained with a steam atmosphere in radiative-convective equilibrium and a supercritical water layer on top of a differentiated interior made of a silicate mantle and a small iron core.
Large sub-Neptunes are uncommon around the coolest stars in the Galaxy and are rarer still around those that are metal-poor. However, owing to the large planet-to-star radius ratio, these planets are highly suitable for atmospheric study via transmission spectroscopy in the infrared, such as with JWST. Here we report the discovery and validation of a sub-Neptune orbiting the thick-disk, mid-M dwarf star TOI-2406. We first infer properties of the host star by analysing the stars near-infrared spectrum, spectral energy distribution, and Gaia parallax. We use multi-band photometry to confirm that the transit event is on-target and achromatic, and we statistically validate the TESS signal as a transiting exoplanet. We then determine physical properties of the planet through global transit modelling of the TESS and ground-based time-series data. We determine the host to be a metal-poor M4V star, located at a distance of 56 pc, with a sub-solar metallicity $(mathrm{[Fe/H] = -0.38 pm 0.07})$, and a member of the thick disk. The planet is a relatively large sub-Neptune for the M-dwarf planet population, with $mathrm{R_p = 2.94 pm 0.17} mathrm{R_oplus}$ and $mathrm{P = 3.077}$ d, producing transits of 2% depth. We note the orbit has a non-zero eccentricity to 3$mathrm{sigma}$, prompting questions about the dynamical history of the system. This system is an interesting outcome of planet formation and presents a benchmark for large-planet formation around metal-poor, low-mass stars. The system warrants further study, in particular radial velocity follow-up to determine the planet mass and constrain possible bound companions. Furthermore, TOI-2406 b is a good target for future atmospheric study through transmission spectroscopy, particularly in the category of warm sub-Neptunes.
We report the Transiting Exoplanet Survey Satellite discovery of three small planets transiting one of the nearest and brightest M dwarf hosts to date, TOI-270 (TIC 259377017; K-mag 8.3; 22.5 parsec). The M3V-type star is transited by the super-Earth-sized TOI-270 b (1.247+0.089-0.083 R_earth) and the sub-Neptune-sized exoplanets TOI-270 c (2.42+-0.13 R_earth) and TOI-270 d (2.13+-0.12 R_earth). The planets orbit close to a mean-motion resonant chain, with periods (3.36, 5.66, and 11.38 days) near ratios of small integers (5:3 and 2:1). TOI-270 is a prime target for future studies since: 1) its near-resonance allows detecting transit timing variations for precise mass measurements and dynamical studies; 2) its brightness enables independent radial velocity mass measurements; 3) the outer planets are ideal for atmospheric characterisation via transmission spectroscopy; and 4) the quiet star enables future searches for habitable zone planets. Altogether, very few systems with small, temperate exoplanets are as suitable for such complementary and detailed characterisation as TOI-270.
We present the confirmation of a new sub-Neptune close to the transition between super-Earths and sub-Neptunes transiting the M2 dwarf TOI- 269 (TIC 220479565, V = 14.4 mag, J = 10.9 mag, Rstar = 0.40 Rsun, Mstar = 0.39 Msun, d = 57 pc). The exoplanet candidate has been identified in multiple TESS sectors, and validated with high-precision spectroscopy from HARPS and ground-based photometric follow-up from ExTrA and LCO-CTIO. We determined mass, radius, and bulk density of the exoplanet by jointly modeling both photometry and radial velocities with juliet. The transiting exoplanet has an orbital period of P = 3.6977104 +- 0.0000037 days, a radius of 2.77 +- 0.12 Rearth, and a mass of 8.8 +- 1.4 Mearth. Since TOI-269 b lies among the best targets of its category for atmospheric characterization, it would be interesting to probe the atmosphere of this exoplanet with transmission spectroscopy in order to compare it to other sub-Neptunes. With an eccentricity e = 0.425+0.082-0.086, TOI-269 b has one of the highest eccentricities of the exoplanets with periods less than 10 days. The star being likely a few Gyr old, this system does not appear to be dynamically young. We surmise TOI-269 b may have acquired its high eccentricity as it migrated inward through planet-planet interactions.
We report the discovery and characterisation of a super-Earth and a sub-Neptune transiting the bright ($K=8.8$), quiet, and nearby (37 pc) M3V dwarf TOI-1266. We validate the planetary nature of TOI-1266 b and c using four sectors of TESS photometry and data from the newly-commissioned 1-m SAINT-EX telescope located in San Pedro Martir (Mexico). We also include additional ground-based follow-up photometry as well as high-resolution spectroscopy and high-angular imaging observations. The inner, larger planet has a radius of $R=2.37_{-0.12}^{+0.16}$ R$_{oplus}$ and an orbital period of 10.9 days. The outer, smaller planet has a radius of $R=1.56_{-0.13}^{+0.15}$ R$_{oplus}$ on an 18.8-day orbit. The data are found to be consistent with circular, co-planar and stable orbits that are weakly influenced by the 2:1 mean motion resonance. Our TTV analysis of the combined dataset enables model-independent constraints on the masses and eccentricities of the planets. We find planetary masses of $M_mathrm{p}$ = $13.5_{-9.0}^{+11.0}$ $mathrm{M_{oplus}}$ ($<36.8$ $mathrm{M_{oplus}}$ at 2-$sigma$) for TOI-1266 b and $2.2_{-1.5}^{+2.0}$ $mathrm{M_{oplus}}$ ($<5.7$ $mathrm{M_{oplus}}$ at 2-$sigma$) for TOI-1266 c. We find small but non-zero orbital eccentricities of $0.09_{-0.05}^{+0.06}$ ($<0.21$ at 2-$sigma$) for TOI-1266 b and $0.04pm0.03$ ($<0.10$ at 2-$sigma$) for TOI-1266 c. The equilibrium temperatures of both planets are of $413pm20$ K and $344pm16$ K, respectively, assuming a null Bond albedo and uniform heat redistribution from the day-side to the night-side hemisphere. The host brightness and negligible activity combined with the planetary system architecture and favourable planet-to-star radii ratios makes TOI-1266 an exquisite system for a detailed characterisation.