Do you want to publish a course? Click here

Adding color: Visualization of energy landscapes in spin glasses

202   0   0.0 ( 0 )
 Added by Helmut Katzgraber
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Disconnectivity graphs are used to visualize the minima and the lowest energy barriers between the minima of complex systems. They give an easy and intuitive understanding of the underlying energy landscape and, as such, are excellent tools for understanding the complexity involved in finding low-lying or global minima of such systems. We have developed a classification scheme that categorizes highly-degenerate minima of spin glasses based on similarity and accessibility of the individual states. This classification allows us to condense the information pertained in different dales of the energy landscape to a single representation using color to distinguish its type and a bar chart to indicate the average size of the dales at their respective energy levels. We use this classification to visualize disconnectivity graphs of small representations of different tile-planted models of spin glasses. An analysis of the results shows that different models have distinctly different features in the total number of minima, the distribution of the minima with respect to the ground state, the barrier height and in the occurrence of the different types of minimum energy dales.



rate research

Read More

190 - Bettina Heim 2014
The strongest evidence for superiority of quantum annealing on spin glass problems has come from comparing simulated quantum annealing using quantum Monte Carlo (QMC) methods to simulated classical annealing [G. Santoro et al., Science 295, 2427(2002)]. Motivated by experiments on programmable quantum annealing devices we revisit the question of when quantum speedup may be expected for Ising spin glass problems. We find that even though a better scaling compared to simulated classical annealing can be achieved for QMC simulations, this advantage is due to time discretization and measurements which are not possible on a physical quantum annealing device. QMC simulations in the physically relevant continuous time limit, on the other hand, do not show superiority. Our results imply that care has to be taken when using QMC simulations to assess quantum speedup potential and are consistent with recent arguments that no quantum speedup should be expected for two-dimensional spin glass problems.
We study the energy minima of the fully-connected $m$-components vector spin glass model at zero temperature in an external magnetic field for $mge 3$. The model has a zero temperature transition from a paramagnetic phase at high field to a spin glass phase at low field. We study the eigenvalues and eigenvectors of the Hessian in the minima of the Hamiltonian. The spectrum is gapless both in the paramagnetic and in the spin glass phase, with a pseudo-gap behaving as $lambda^{m-1}$ in the paramagnetic phase and as $sqrt{lambda}$ in the spin glass phase. Despite the long-range nature of the model, the eigenstates close to the edge of the spectrum display quasi-localization properties. We show that the paramagnetic to spin glass transition corresponds to delocalization of the edge eigenvectors. We solve the model by the cavity method in the thermodynamic limit. We also perform numerical minimization of the Hamiltonian for $Nle 2048$ and compute the spectral properties, that show very strong corrections to the asymptotic scaling approaching the critical point.
We investigate the properties of local minima of a recently introduced spin glass model of soft spins subjected to an anharmonic quartic local potential which serves as a model of low temperature molecular or soft glasses. We track the long time gradient descent dynamics in the glassy phase through dynamical mean field theory and show that spins are separated in two groups depending on their local stiffness. For spins having local stiffness that is right above its smallest possible value, the local fields distribution displays a depletion around the origin while those having a stiffness right below its largest possible value have a regular local fields distribution. We rationalize these findings through the replica method and show that the finite temperature phase transition to the glass phase is of continuous (full) replica-symmetry-breaking (RSB) type at low temperatures, down to zero temperature. Furthermore, marginal stability of the zero temperature fullRSB solution implies a linear pseudogap in the density of cavity fields for the spins with a local effective stiffness that is below a certain threshold. This generates a hole around the origin in the corresponding local field distribution. Those spins are natural candidates to model two level systems (TLS). The behavior of the cavity fields distribution for spins having stiffness close to the threshold one determines the tail of the low frequency density of states which is gapless. Therefore the corresponding spins are the natural candidates to model quasi localized modes (QLM) in glasses.
We study the problem of glassy relaxations in the presence of an external field in the highly controlled context of a spin-glass simulation. We consider a small spin glass in three dimensions (specifically, a lattice of size L=8, small enough to be equilibrated through a Parallel Tempering simulations at low temperatures, deep in the spin glass phase). After equilibrating the sample, an external field is switched on, and the subsequent dynamics is studied. The field turns out to reduce the relaxation time, but huge statistical fluctuations are found when different samples are compared. After taking care of these fluctuations we find that the expected linear regime is very narrow. Nevertheless, when regarded as a purely numerical method, we find that the external field is extremely effective in reducing the relaxation times.
Using a non-thermal local search, called Extremal Optimization (EO), in conjunction with a recently developed scheme for classifying the valley structure of complex systems, we analyze a short-range spin glass. In comparison with earlier studies using a thermal algorithm with detailed balance, we determine which features of the landscape are algorithm dependent and which are inherently geometrical. Apparently a characteristic for any local search in complex energy landscapes, the time series of successive energy records found by EO also is characterized approximately by a log-Poisson statistics. Differences in the results provide additional insights into the performance of EO. In contrast with a thermal search, the extremal search visits dramatically higher energies while returning to more widely separated low-energy configurations. Two important properties of the energy landscape are independent of either algorithm: first, to find lower energy records, progressively higher energy barriers need to be overcome. Second, the Hamming distance between two consecutive low-energy records is linearly related to the height of the intervening barrier.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا