No Arabic abstract
We present an efficient method of utilizing pretrained language models, where we learn selective binary masks for pretrained weights in lieu of modifying them through finetuning. Extensive evaluations of masking BERT and RoBERTa on a series of NLP tasks show that our masking scheme yields performance comparable to finetuning, yet has a much smaller memory footprint when several tasks need to be inferred simultaneously. Through intrinsic evaluations, we show that representations computed by masked language models encode information necessary for solving downstream tasks. Analyzing the loss landscape, we show that masking and finetuning produce models that reside in minima that can be connected by a line segment with nearly constant test accuracy. This confirms that masking can be utilized as an efficient alternative to finetuning.
We present a simple yet effective approach to build multilingual speech-to-text (ST) translation by efficient transfer learning from pretrained speech encoder and text decoder. Our key finding is that a minimalistic LNA (LayerNorm and Attention) finetuning can achieve zero-shot crosslingual and cross-modality transfer ability by only finetuning less than 10% of the pretrained parameters. This enables effectively leveraging large pretrained models with low training cost. Using wav2vec 2.0 for acoustic modeling, and mBART for multilingual text generation, our approach advanced the new state-of-the-art for 34 translation directions (and surpassing cascaded ST for 23 of them) on large-scale multilingual ST benchmark CoVoST 2 (+6.4 BLEU on average across 15 En-X directions and +5.1 BLEU on average across 19 X-En directions). Our approach demonstrates strong zero-shot performance in a many-to-many multilingual model (+5.7 BLEU on average across 18 non-English directions), making it an appealing approach for attaining high-quality speech translation with improved parameter and data efficiency.
Metadata attributes (e.g., user and product IDs from reviews) can be incorporated as additional inputs to neural-based NLP models, by modifying the architecture of the models, in order to improve their performance. Recent models however rely on pretrained language models (PLMs), where previously used techniques for attribute injection are either nontrivial or ineffective. In this paper, we propose a lightweight and memory-efficient method to inject attributes to PLMs. We extend adapters, i.e. tiny plug-in feed-forward modules, to include attributes both independently of or jointly with the text. To limit the increase of parameters especially when the attribute vocabulary is large, we use low-rank approximations and hypercomplex multiplications, significantly decreasing the total parameters. We also introduce training mechanisms to handle domains in which attributes can be multi-labeled or sparse. Extensive experiments and analyses on eight datasets from different domains show that our method outperforms previous attribute injection methods and achieves state-of-the-art performance on various datasets.
Transformers have outperformed recurrent neural networks (RNNs) in natural language generation. This comes with a significant computational overhead, as the attention mechanism scales with a quadratic complexity in sequence length. Efficient transformer variants have received increasing interest from recent works. Among them, a linear-complexity recurrent variant has proven well suited for autoregressive generation. It approximates the softmax attention with randomized or heuristic feature maps, but can be difficult to train or yield suboptimal accuracy. This work aims to convert a pretrained transformer into its efficient recurrent counterpart, improving the efficiency while retaining the accuracy. Specifically, we propose a swap-then-finetune procedure: in an off-the-shelf pretrained transformer, we replace the softmax attention with its linear-complexity recurrent alternative and then finetune. With a learned feature map, our approach provides an improved tradeoff between efficiency and accuracy over the standard transformer and other recurrent variants. We also show that the finetuning process needs lower training cost than training these recurrent variants from scratch. As many recent models for natural language tasks are increasingly dependent on large-scale pretrained transformers, this work presents a viable approach to improving inference efficiency without repeating the expensive pretraining process.
Graph-to-text generation aims to generate fluent texts from graph-based data. In this paper, we investigate two recently proposed pretrained language models (PLMs) and analyze the impact of different task-adaptive pretraining strategies for PLMs in graph-to-text generation. We present a study across three graph domains: meaning representations, Wikipedia knowledge graphs (KGs) and scientific KGs. We show that the PLMs BART and T5 achieve new state-of-the-art results and that task-adaptive pretraining strategies improve their performance even further. In particular, we report new state-of-the-art BLEU scores of 49.72 on LDC2017T10, 59.70 on WebNLG, and 25.66 on AGENDA datasets - a relative improvement of 31.8%, 4.5%, and 42.4%, respectively. In an extensive analysis, we identify possible reasons for the PLMs success on graph-to-text tasks. We find evidence that their knowledge about true facts helps them perform well even when the input graph representation is reduced to a simple bag of node and edge labels.
As a step toward better document-level understanding, we explore classification of a sequence of sentences into their corresponding categories, a task that requires understanding sentences in context of the document. Recent successful models for this task have used hierarchical models to contextualize sentence representations, and Conditional Random Fields (CRFs) to incorporate dependencies between subsequent labels. In this work, we show that pretrained language models, BERT (Devlin et al., 2018) in particular, can be used for this task to capture contextual dependencies without the need for hierarchical encoding nor a CRF. Specifically, we construct a joint sentence representation that allows BERT Transformer layers to directly utilize contextual information from all words in all sentences. Our approach achieves state-of-the-art results on four datasets, including a new dataset of structured scientific abstracts.