Heavy flavor supplies a chance to constrain and improve the hadronization mechanism. We have established a sequential coalescence model with charm conservation and applied it to the charmed hadron production in heavy ion collisions. The charm conservation enhances the earlier hadron production and suppresses the later production. This relative enhancement (suppression) changes significantly the ratios between charmed hadrons in heavy ion collisions.
A study of the horn in the particle ratio $K^+/pi^+$ for central heavy-ion collisions as a function of the collision energy $sqrt{s}$ is presented. We analyse two different interpretations: the onset of deconfinement and the transition from a baryon- to a meson-dominated hadron gas. We use a realistic equation of state (EOS), which includes both hadron and quark degrees-of-freedom. The Taub-adiabate procedure is followed to determine the system at the early stage. Our results do not support an explanation of the horn as due to the onset of deconfinement. Using only hadronic EOS we reproduced the energy dependence of the $K^+/pi^+$ and $Lambda/pi^-$ ratios employing an experimental parametrisation of the freeze-out curve. We observe a transition between a baryon- and a meson-dominated regime; however, the reproduction of the $K^+/pi^+$ and $Lambda/pi^-$ ratios as a function of $sqrt{s}$ is not completely satisfying. We finally propose a new idea for the interpretation of the data, the roll-over scheme, in which the scalar meson field $sigma$ has not reached the thermal equilibrium at freeze-out. The rool-over scheme for the equilibration of the $sigma$-field is based on the inflation mechanism. The non-equilibrium evolution of the scalar field influences the particle production, e.g. $K^+/pi^+$, however, the fixing of the free parameters in this model is still an open issue.
We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter $hat q $. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the in-cone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.
There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.
The formation of Mach cones is studied in a full $(3+1)$-dimensional setup of ultrarelativistic heavy-ion collisions, considering a transverse and longitudinal expanding medium at Relativistic Heavy-Ion Collider energies. For smooth initial conditions and central collisions the jet-medium interaction is investigated using high-energy jets and various values of the ratio of shear viscosity over entropy density, $eta/s$. For small viscosities, the formation of Mach cones is proven, whereas for larger viscosities the characteristic structures smear out and vanish eventually. The formation of a double-peak structure both in a single- and in a multiple-jet event is discussed.
We predict that triangle singularities of hadron spectroscopy can be strongly affected in heavy ion collisions. To do it we examine various effects on the singularity-inducing triangle loop of finite temperature in the terminal hadron phase. It appears that peaks seen in central heavy ion collisions are more likely to be hadrons than rescattering effects under two conditions. First, the flight-time of the intermediate hadron state must be comparable to the lifetime of the equilibrated fireball (else, the reaction mostly happens in vacuo after freeze out). Second, the medium effect over the triangle-loop particle mass or width must be sizeable. When these (easily checked) conditions are met, the medium quickly reduces the singularity: at T about 150 MeV, even by two orders of magnitude, acting then as a spectroscopic filter.