Do you want to publish a course? Click here

Congestion-aware Evacuation Routing using Augmented Reality Devices

87   0   0.0 ( 0 )
 Added by Hangxin Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a congestion-aware routing solution for indoor evacuation, which produces real-time individual-customized evacuation routes among multiple destinations while keeping tracks of all evacuees locations. A population density map, obtained on-the-fly by aggregating locations of evacuees from user-end Augmented Reality (AR) devices, is used to model the congestion distribution inside a building. To efficiently search the evacuation route among all destinations, a variant of A* algorithm is devised to obtain the optimal solution in a single pass. In a series of simulated studies, we show that the proposed algorithm is more computationally optimized compared to classic path planning algorithms; it generates a more time-efficient evacuation route for each individual that minimizes the overall congestion. A complete system using AR devices is implemented for a pilot study in real-world environments, demonstrating the efficacy of the proposed approach.



rate research

Read More

We present an early study designed to analyze how city planning and the health of senior citizens can benefit from the use of augmented reality (AR) using Microsofts HoloLens. We also explore whether AR and VR can be used to help city planners receive real-time feedback from citizens, such as the elderly, on virtual plans, allowing for informed decisions to be made before any construction begins.
Edge Computing exploits computational capabilities deployed at the very edge of the network to support applications with low latency requirements. Such capabilities can reside in small embedded devices that integrate dedicated hardware -- e.g., a GPU -- in a low cost package. But these devices have limited computing capabilities compared to standard server grade equipment. When deploying an Edge Computing based application, understanding whether the available hardware can meet target requirements is key in meeting the expected performance. In this paper, we study the feasibility of deploying Augmented Reality applications using Embedded Edge Devices (EEDs). We compare such deployment approach to one exploiting a standard dedicated server grade machine. Starting from an empirical evaluation of the capabilities of these devices, we propose a simple theoretical model to compare the performance of the two approaches. We then validate such model with NS-3 simulations and study their feasibility. Our results show that there is no one-fits-all solution. If we need to deploy high responsiveness applications, we need a centralized server grade architecture and we can in any case only support very few users. The centralized architecture fails to serve a larger number of users, even when low to mid responsiveness is required. In this case, we need to resort instead to a distributed deployment based on EEDs.
We introduce Blocks, a mobile application that enables people to co-create AR structures that persist in the physical environment. Using Blocks, end users can collaborate synchronously or asynchronously, whether they are colocated or remote. Additionally, the AR structures can be tied to a physical location or can be accessed from anywhere. We evaluated how people used Blocks through a series of lab and field deployment studies with over 160 participants, and explored the interplay between two collaborative dimensions: space and time. We found that participants preferred creating structures synchronously with colocated collaborators. Additionally, they were most active when they created structures that were not restricted by time or place. Unlike most of todays AR experiences, which focus on content consumption, this work outlines new design opportunities for persistent and collaborative AR experiences that empower anyone to collaborate and create AR content.
Mobile Augmented Reality (MAR) integrates computer-generated virtual objects with physical environments for mobile devices. MAR systems enable users to interact with MAR devices, such as smartphones and head-worn wearables, and performs seamless transitions from the physical world to a mixed world with digital entities. These MAR systems support user experiences by using MAR devices to provide universal accessibility to digital contents. Over the past 20 years, a number of MAR systems have been developed, however, the studies and design of MAR frameworks have not yet been systematically reviewed from the perspective of user-centric design. This article presents the first effort of surveying existing MAR frameworks (count: 37) and further discusses the latest studies on MAR through a top-down approach: 1) MAR applications; 2) MAR visualisation techniques adaptive to user mobility and contexts; 3) systematic evaluation of MAR frameworks including supported platforms and corresponding features such as tracking, feature extraction plus sensing capabilities; and 4) underlying machine learning approaches supporting intelligent operations within MAR systems. Finally, we summarise the development of emerging research fields, current state-of-the-art, and discuss the important open challenges and possible theoretical and technical directions. This survey aims to benefit both researchers and MAR system developers alike.
This study considers modern surgical navigation systems based on augmented reality technologies. Augmented reality glasses are used to construct holograms of the patients organs from MRI and CT data, subsequently transmitted to the glasses. This, in addition to seeing the actual patient, the surgeon gains visualization inside the patients body (bones, soft tissues, blood vessels, etc.). The solutions developed at Peter the Great St. Petersburg Polytechnic University allow reducing the invasiveness of the procedure and preserving healthy tissues. This also improves the navigation process, making it easier to estimate the location and size of the tumor to be removed. We describe the application of developed systems to different types of surgical operations (removal of a malignant brain tumor, removal of a cyst of the cervical spine). We consider the specifics of novel navigation systems designed for anesthesia, for endoscopic operations. Furthermore, we discuss the construction of novel visualization systems for ultrasound machines. Our findings indicate that the technologies proposed show potential for telemedicine.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا