Do you want to publish a course? Click here

Astronomical Site Monitoring System at Lijiang Observatory

110   0   0.0 ( 0 )
 Added by Yuxin Xin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We installed two sets of Astronomical Site Monitoring System(ASMS) at Lijiang Observatory(GMG), for the running of the 2.4-meter Lijiang optical telescope(LJT) and the 1.6-meter Multi-channel Photometric Survey Telescope (Mephisto). The Mephistro is under construction. ASMS has been running on robotic mode since 2017. The core instruments: Cloud Sensor, All-Sky Camera and Autonomous-DIMM that are developed by our group, together with the commercial Meteorological Station and Sky Quality Meter, are combined into the astronomical optical site monitoring system. The new Cloud Sensors Cloud-Clear Relationship is presented for the first time, which is used to calculate the All-Sky cloud cover. We designed the Autonomous-DIMM located on a tower, with the same height as LJT. The seeing data have been observed for a full year. ASMSs data for the year 2019 are also analysed in detail, which are valuable to observers.



rate research

Read More

The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10^17 eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e.g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or rapid) monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction.
Observing a telluric standard star for correcting the telluric absorption lines of spectrum will take a significant amount of precious telescope time, especially in the long-term spectral monitoring project. Beyond that, its difficult to select a suitable telluric standard star near in both time and airmass to the scientific object. In this paper, we present a method of correcting the telluric absorption lines by combining the advantages of long slit spectroscopy. By rotating the slit, we observed the scientific object and a nearby comparison star in one exposure, so that the spectra of both objects should have the same telluric transmission spectrum. The telluric transmission spectrum was constructed by dividing the observed spectrum of comparison star by its stellar template, and was used to correct the telluric absorption lines of the scientific object. Using the long slit spectrograph of Lijiang 2.4-meter telescope, we designed a long-term spectroscopic observation strategy, and finished a four-year spectroscopic monitoring for a pair of objects (an active galactic nuclei and an non-varying comparison star). We applied this method to correct the telluric absorption lines of the long-term monitored spectra by Lijiang 2.4-meter telescope, and investigated the variation of the telluric absorptions at Lijiang Observatory. We found that the telluric absorption transparency is mainly modulated by the seasonal variability of the relative humidity, airmass and seeing. Using the scatter of the [O~III] $lambda$5007 fluxes emitted from the narrow-line region of active galactic nuclei as an indicator, we found that the correction accuracy of the telluric absorption lines is 1%.
219 - R. J. Hanisch 2015
The U.S. Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the U.S. coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the U.S. National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards within the International Virtual Observatory Alliance. The VAO also demonstrated how an operational virtual observatory could be deployed, providing a robust operational environment in which VO services worldwide were routinely checked for aliveness and compliance with international standards. Finally, the VAO engaged in community outreach, developing a comprehensive web site with on-line tutorials, announcements, links to both U.S. and internationally developed tools and services, and exhibits and hands-on training .... All digital products of the VAO Project, including software, documentation, and tutorials, are stored in a repository for community access. The enduring legacy of the VAO is an increasing expectation that new telescopes and facilities incorporate VO capabilities during the design of their data management systems.
66 - N. Wang 2001
A pulsar timing system has been operating in the 18-cm band at the Urumqi Astronomical Observatory 25-m telescope since mid-1999. Frequency resolution allowing dedispersion of the pulsar signals is provided by a 2X128X2.5 MHz filterbank/digitiser system. Observations of 74 pulsars over more than 12 months have resulted in updated pulsar periods and period derivatives, as well as improved positions. Comparison with previous measurements showed that the changes in period and period derivative tend to have the same sign and to be correlated in amplitude. A model based on unseen glitches gives a good explanation of the observed changes, suggesting that long-term fluctuations in period and period derivatives are dominated by glitches. In 2000 July, we detected a glitch of relative amplitude Delta_nu/nu~24X1e-9 in the Crab pulsar. The post-glitch decay appears similar to other large Crab glitches.
INAF Trieste Astronomical Observatory (OATs) has a long tradition in information technology applied to Astronomical and Astrophysical use cases, particularly for what regards computing for data reduction, analysis and simulations; data and archives management; space missions data processing; design and software development for ground-based instruments. The ensemble of these activities, in the last years, pushed the need to acquire new computing resources and technologies and to deep competences in theirs management. In this paper we describe INAF-OATs computing centre technological stuff, our involvement in different EU Projects both in the path of building of EOSC, the European Open Science Cloud; in the design and prototyping of new Exascale supercomputers in Europe and the main research activities carried on using our computing centre.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا