Milnor excision for motivic spectra


Abstract in English

We prove that the $infty$-category of motivic spectra satisfies Milnor excision: if $Ato B$ is a morphism of commutative rings sending an ideal $Isubset A$ isomorphically onto an ideal of $B$, then a motivic spectrum over $A$ is equivalent to a pair of motivic spectra over $B$ and $A/I$ that are identified over $B/IB$. Consequently, any cohomology theory represented by a motivic spectrum satisfies Milnor excision. We also prove Milnor excision for Ayoubs etale motives over schemes of finite virtual cohomological dimension.

Download