No Arabic abstract
We investigate the shadows and photon spheres of the four-dimensional Gauss-Bonnet black hole with the static and infalling spherical accretions. We show that for both cases, the shadow and photon sphere are always present. The radii of the shadow and photon sphere are independent of the profiles of accretion for a fixed Gauss-Bonnet constant, implying that the shadow is a signature of the spacetime geometry and it is hardly influenced by accretion in this case. Because of the Doppler effect, the shadow of the infalling accretion is found to be darker than that of the static one. We also investigate the effect of the Gauss-Bonnet constant on the shadow and photon sphere, and find that the larger the Gauss-Bonnet constant is, the smaller the radii of the shadow and photon sphere will be. In particular, the observed specific intensity increases with the increasing of the Gauss-Bonnet constant.
In this paper, we investigate the photon sphere, shadow radius and quasinormal modes of a four-dimensional charged Einstein-Gauss-Bonnet black hole. The perturbation of a massless scalar field in the black holes background is adopted. The quasinormal modes are gotten by the $6th$ order WKB approximation approach and shadow radius, respectively. When the value of the Gauss-Bonnet coupling constant increase, the values of the real parts of the quasinormal modes increase and those of the imaginary parts decrease. The coincidence degrees of quasinormal modes derived by the two approaches increases with the increase of the values of the Gauss-Bonnet coupling constant and multiple number. It shows the correspondence between the shadow and test field in the four-dimensional Einstein-Gauss-Bonnet-Maxwell gravity. The radii of the photon sphere and shadow increase with the decrease of the Gauss-Bonnet coupling constant.
Spontaneous scalarization is a gravitational phenomenon in which deviations from general relativity arise once a certain threshold in curvature is exceeded, while being entirely absent below that threshold. For black holes, scalarization is known to be triggered by a coupling between a scalar and the Gauss-Bonnet invariant. A coupling with the Ricci scalar, which can trigger scalarization in neutron stars, is instead known to not contribute to the onset of black hole scalarization, and has so far been largely ignored in the literature when studying scalarized black holes. In this paper, we study the combined effect of both these couplings on black hole scalarization. We show that the Ricci coupling plays a significant role in the properties of scalarized solutions and their domain of existence. This work is an important step in the construction of scalarization models that evade binary pulsar constraints and have general relativity as a cosmological late-time attractor, while still predicting deviations from general relativity in black hole observations.
We investigate the presence of a black hole black string phase transition in Einstein Gauss Bonnet (EGB) gravity in the large dimension limit. The merger point is the static spacetime connecting the black string phase with the black hole phase. We consider several ranges of the Gauss-Bonnet parameter. We find that there is a range when the Gauss-Bonnet corrections are subordinate to the Einstein gravity terms in the large dimension limit, and yet the merger point geometry does not approach a black hole away from the neck. We cannot rule out a topology changing phase transition as argued by Kol. However as the merger point geometry does not approach the black hole geometry asymptotically it is not obvious that the transition is directly to a black hole phase. We also demonstrate that for another range of the Gauss-Bonnet parameter, the merger point geometry approaches the black hole geometry asymptotically when a certain parameter depending on the Gauss-Bonnet parameter $alpha$ and on the parameters in the Einstein-Gauss-Bonnet black hole metric is small enough.
We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curvature-couplings the resulting scalarized black hole solutions are nonlinearly stable. For such small couplings, we show that an elliptic region forms inside these EdGB black hole spacetimes (prior to any curvature singularity), and give evidence that this region remains censored from asymptotic view. However, for coupling values superextremal relative to a given black hole mass, an elliptic region forms exterior to the horizon, implying the exterior Cauchy problem is ill-posed in this regime.
An internal singularity of a string four-dimensional black hole with second order curvature corrections is discussed. A restriction to a minimal size of a neutral black hole is obtained in the frame of the model considered. Vacuum polarization of the surrounding space-time caused by this minimal-size black hole is also discussed.