No Arabic abstract
A popular approach in numerical simulations of black hole binaries is to model black holes as punctures in the fabric of spacetime. The location and the properties of the black hole punctures are tracked with apparent horizons, namely outermost marginally outer trapped surfaces (MOTSs). As the holes approach each other, a common apparent horizon suddenly appears, engulfing the two black holes and signaling the merger. The evolution of common apparent horizons and their connection with gravitational wave emission have been studied in detail with the framework of dynamical horizons. We present a study of the dynamics of the MOTSs and their punctures in the interior of the final black hole. The study focuses on head-on mergers for various initial separations and mass ratios. We find that MOTSs intersect for most of the parameter space. We show that for those situations in which they do not, it is because of the singularity avoidance property of the moving puncture gauge condition used in the study. Although we are unable to carry out evolutions that last long enough to show the ultimate fate of the punctures, our results suggest that MOTSs always intersect and that at late times their overlap is only partial. As a consequence, the punctures inside the MOTSs, although close enough to each other to act effectively as a single puncture, do not merge.
The horizon (the surface) of a black hole is a null surface, defined by those hypothetical outgoing light rays that just hover under the influence of the strong gravity at the surface. Because the light rays are orthogonal to the spatial 2-dimensional surface at one instant of time, the surface of the black hole is the same for all observers (i.e. the same for all coordinate definitions of instant of time). This value is 4*(pi)* (2Gm/c^2)^2 for nonspinning black holes, with G= Newtons constant, c= speed of light, and m= mass of the black hole. The 3-dimensional spatial volume inside a black hole, in contrast, depends explicitly on the definition of time, and can even be time dependent, or zero. We give examples of the volume found inside a standard, nonspinning spherical black hole, for several different standard time-coordinate definitions. Elucidating these results for the volume provides a new pedagogical resource of facts already known in principle to the relativity community, but rarely worked out.
We demonstrate that numerical relativity codes based on the moving punctures formalism are capable of evolving nearly maximally spinning black hole binaries. We compare a new evolution of an equal-mass, aligned-spin binary with dimensionless spin chi=0.99 using puncture-based data with recent simulations of the SXS Collaboration. We find that the overlap of our new waveform with the published results of the SXS Collaboration is larger than 0.999. To generate our new waveform, we use the recently introduced HiSpID puncture data, the CCZ4 evolution system, and a modified lapse condition that helps keep the horizon radii reasonably large.
We present results on the mass and spin of the final black hole from mergers of equal mass, spinning black holes. The study extends over a broad range of initial orbital configurations, from direct plunges to quasi-circular inspirals to more energetic orbits (generalizations of Newtonian elliptical orbits). It provides a comprehensive search of those configurations that maximize the final spin of the remnant black hole. We estimate that the final spin can reach a maximum spin $a/M_h approx 0.99pm 0.01$ for extremal black hole mergers. In addition, we find that, as one increases the orbital angular momentum from small values, the mergers produce black holes with mass and spin parameters $lbrace M_h/M, a/M_h rbrace$ ~spiraling around the values $lbrace hat M_h/M, hat a/M_h rbrace$ of a {it golden} black hole. Specifically, $(M_h-hat M_h)/M propto e^{pm B,phi}cos{phi}$ and $(a-hat a)/M_h propto e^{pm C,phi}sin{phi}$, with $phi$ a monotonically growing function of the initial orbital angular momentum. We find that the values of the parameters for the emph{golden} black hole are those of the final black hole obtained from the merger of a binary with the corresponding spinning black holes in a quasi-circular inspiral.
We study the spectrum of the bound state perturbations in the interior of the Schwarzschild black hole for the scalar, electromagnetic and gravitational perturbations. Demanding that the perturbations to be regular at the center of the black hole determines the spectrum of the bound state solutions. We show that our analytic expression for the spectrum is in very good agreement with the imaginary parts of the high overtone quasi normal mode excitations obtained for the exterior region. We also present a simple scheme to calculate the spectrum numerically to good accuracies.
If general relativity is spontaneously induced, the black hole limit is governed by a phase transition which occurs precisely at the would have been horizon. The exterior Schwarzschild solution then connects with a novel core of vanishing spatial volume. The Kruskal structure, admitting the exact Hawking imaginary time periodicity, is recovered, with the conic defect defused at the origin, rather than at the horizon. The entropy stored inside textbf{any} interior sphere is universal, equal to a quarter of its surface area, thus locally saturating the t Hooft-Susskind holographic bound. The associated Komar mass and material energy functions are non-singular.