Do you want to publish a course? Click here

Instrumental Variable Estimation of Marginal Structural Mean Models for Time-Varying Treatment

75   0   0.0 ( 0 )
 Added by Haben Michael
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Robins 1997 introduced marginal structural models (MSMs), a general class of counterfactual models for the joint effects of time-varying treatment regimes in complex longitudinal studies subject to time-varying confounding. In his work, identification of MSM parameters is established under a sequential randomization assumption (SRA), which rules out unmeasured confounding of treatment assignment over time. We consider sufficient conditions for identification of the parameters of a subclass, Marginal Structural Mean Models (MSMMs), when sequential randomization fails to hold due to unmeasured confounding, using instead a time-varying instrumental variable. Our identification conditions require that no unobserved confounder predicts compliance type for the time-varying treatment. We describe a simple weighted estimator and examine its finite-sample properties in a simulation study. We apply the proposed estimator to examine the effect of delivery hospital on neonatal survival probability.



rate research

Read More

78 - Shuxiao Chen , Bo Zhang 2021
Estimating dynamic treatment regimes (DTRs) from retrospective observational data is challenging as some degree of unmeasured confounding is often expected. In this work, we develop a framework of estimating properly defined optimal DTRs with a time-varying instrumental variable (IV) when unmeasured covariates confound the treatment and outcome, rendering the potential outcome distributions only partially identified. We derive a novel Bellman equation under partial identification, use it to define a generic class of estimands (termed IV-optimal DTRs), and study the associated estimation problem. We then extend the IV-optimality framework to tackle the policy improvement problem, delivering IV-improved DTRs that are guaranteed to perform no worse and potentially better than a pre-specified baseline DTR. Importantly, our IV-improvement framework opens up the possibility of strictly improving upon DTRs that are optimal under the no unmeasured confounding assumption (NUCA). We demonstrate via extensive simulations the superior performance of IV-optimal and IV-improved DTRs over the DTRs that are optimal only under the NUCA. In a real data example, we embed retrospective observational registry data into a natural, two-stage experiment with noncompliance using a time-varying IV and estimate useful IV-optimal DTRs that assign mothers to high-level or low-level neonatal intensive care units based on their prognostic variables.
Instrumental variables are widely used to deal with unmeasured confounding in observational studies and imperfect randomized controlled trials. In these studies, researchers often target the so-called local average treatment effect as it is identifiable under mild conditions. In this paper, we consider estimation of the local average treatment effect under the binary instrumental variable model. We discuss the challenges for causal estimation with a binary outcome, and show that surprisingly, it can be more difficult than the case with a continuous outcome. We propose novel modeling and estimating procedures that improve upon existing proposals in terms of model congeniality, interpretability, robustness or efficiency. Our approach is illustrated via simulation studies and a real data analysis.
The primary analysis of randomized screening trials for cancer typically adheres to the intention-to-screen principle, measuring cancer-specific mortality reductions between screening and control arms. These mortality reductions result from a combination of the screening regimen, screening technology and the effect of the early, screening-induced, treatment. This motivates addressing these different aspects separately. Here we are interested in the causal effect of early versus delayed treatments on cancer mortality among the screening-detectable subgroup, which under certain assumptions is estimable from conventional randomized screening trial using instrumental variable type methods. To define the causal effect of interest, we formulate a simplified structural multi-state model for screening trials, based on a hypothetical intervention trial where screening detected individuals would be randomized into early versus delayed treatments. The cancer-specific mortality reductions after screening detection are quantified by a cause-specific hazard ratio. For this, we propose two estimators, based on an estimating equation and a likelihood expression. The methods extend existing instrumental variable methods for time-to-event and competing risks outcomes to time-dependent intermediate variables. Using the multi-state model as the basis of a data generating mechanism, we investigate the performance of the new estimators through simulation studies. In addition, we illustrate the proposed method in the context of CT screening for lung cancer using the US National Lung Screening Trial (NLST) data.
We consider the estimation of the average treatment effect in the treated as a function of baseline covariates, where there is a valid (conditional) instrument. We describe two doubly robust (DR) estimators: a locally efficient g-estimator, and a targeted minimum loss-based estimator (TMLE). These two DR estimators can be viewed as generalisations of the two-stage least squares (TSLS) method to semi-parametric models that make weaker assumptions. We exploit recent theoretical results that extend to the g-estimator the use of data-adaptive fits for the nuisance parameters. A simulation study is used to compare standard TSLS with the two DR estimators finite-sample performance, (1) when fitted using parametric nuisance models, and (2) using data-adaptive nuisance fits, obtained from the Super Learner, an ensemble machine learning method. Data-adaptive DR estimators have lower bias and improved coverage, when compared to incorrectly specified parametric DR estimators and TSLS. When the parametric model for the treatment effect curve is correctly specified, the g-estimator outperforms all others, but when this model is misspecified, TMLE performs best, while TSLS can result in large biases and zero coverage. Finally, we illustrate the methods by reanalysing the COPERS (COping with persistent Pain, Effectiveness Research in Self-management) trial to make inference about the causal effect of treatment actually received, and the extent to which this is modified by depression at baseline.
There is a fast-growing literature on estimating optimal treatment regimes based on randomized trials or observational studies under a key identifying condition of no unmeasured confounding. Because confounding by unmeasured factors cannot generally be ruled out with certainty in observational studies or randomized trials subject to noncompliance, we propose a general instrumental variable approach to learning optimal treatment regimes under endogeneity. Specifically, we establish identification of both value function $E[Y_{mathcal{D}(L)}]$ for a given regime $mathcal{D}$ and optimal regimes $text{argmax}_{mathcal{D}} E[Y_{mathcal{D}(L)}]$ with the aid of a binary instrumental variable, when no unmeasured confounding fails to hold. We also construct novel multiply robust classification-based estimators. Furthermore, we propose to identify and estimate optimal treatment regimes among those who would comply to the assigned treatment under a standard monotonicity assumption. In this latter case, we establish the somewhat surprising result that complier optimal regimes can be consistently estimated without directly collecting compliance information and therefore without the complier average treatment effect itself being identified. Our approach is illustrated via extensive simulation studies and a data application on the effect of child rearing on labor participation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا