Spin-phonon interaction induces tunnel splitting in single-molecule magnets


Abstract in English

Quantum tunneling of the magnetization is a major obstacle to the use of single-molecule magnets (SMMs) as basic constituents of next-generation storage devices. In this context, phonons are often only considered (perturbatively) as disturbances that promote the spin system to traverse the anisotropy barrier. Here, we demonstrate the ability of phonons to induce a tunnel splitting of the ground doublet which then reduces the required bistability due to Landau-Zener tunneling of the magnetization. Harmful are those phonons that modify the spin Hamiltonian so that its rotational symmetry about the field axis is destroyed. In our calculations we treat spins and phonons on the same footing by performing quantum calculations of a Hamiltonian where the single-anisotropy tensors are coupled to harmonic oscillators.

Download