No Arabic abstract
In this paper, we tackle a fully unsupervised super-resolution problem, i.e., neither paired images nor ground truth HR images. We assume that low resolution (LR) images are relatively easy to collect compared to high resolution (HR) images. By allowing multiple LR images, we build a set of pseudo pairs by denoising and downsampling LR images and cast the original unsupervised problem into a supervised learning problem but in one level lower. Though this line of study is easy to think of and thus should have been investigated prior to any complicated unsupervised methods, surprisingly, there are currently none. Even more, we show that this simple method outperforms the state-of-the-art unsupervised method with a dramatically shorter latency at runtime, and significantly reduces the gap to the HR supervised models. We submitted our method in NTIRE 2020 super-resolution challenge and won 1st in PSNR, 2nd in SSIM, and 13th in LPIPS. This simple method should be used as the baseline to beat in the future, especially when multiple LR images are allowed during the training phase. However, even in the zero-shot condition, we argue that this method can serve as a useful baseline to see the gap between supervised and unsupervised frameworks.
While the researches on single image super-resolution (SISR), especially equipped with deep neural networks (DNNs), have achieved tremendous successes recently, they still suffer from two major limitations. Firstly, the real image degradation is usually unknown and highly variant from one to another, making it extremely hard to train a single model to handle the general SISR task. Secondly, most of current methods mainly focus on the downsampling process of the degradation, but ignore or underestimate the inevitable noise contamination. For example, the commonly-used independent and identically distributed (i.i.d.) Gaussian noise distribution always largely deviates from the real image noise (e.g., camera sensor noise), which limits their performance in real scenarios. To address these issues, this paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations. Instead of the traditional i.i.d. Gaussian noise assumption, a novel patch-based non-i.i.d. noise modeling method is proposed to fit the complex real noise. Besides, a deep generator parameterized by a DNN is used to map the latent variable to the high-resolution image, and the conventional hyper-Laplacian prior is also elaborately embedded into such generator to further constrain the image gradients. Finally, a Monte Carlo EM algorithm is designed to solve our model, which provides a general inference framework to update the image generator both w.r.t. the latent variable and the network parameters. Comprehensive experiments demonstrate that the proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.
Recently, satellites with high temporal resolution have fostered wide attention in various practical applications. Due to limitations of bandwidth and hardware cost, however, the spatial resolution of such satellites is considerably low, largely limiting their potentials in scenarios that require spatially explicit information. To improve image resolution, numerous approaches based on training low-high resolution pairs have been proposed to address the super-resolution (SR) task. Despite their success, however, low/high spatial resolution pairs are usually difficult to obtain in satellites with a high temporal resolution, making such approaches in SR impractical to use. In this paper, we proposed a new unsupervised learning framework, called MIP, which achieves SR tasks without low/high resolution image pairs. First, random noise maps are fed into a designed generative adversarial network (GAN) for reconstruction. Then, the proposed method converts the reference image to latent space as the migration image prior. Finally, we update the input noise via an implicit method, and further transfer the texture and structured information from the reference image. Extensive experimental results on the Draper dataset show that MIP achieves significant improvements over state-of-the-art methods both quantitatively and qualitatively. The proposed MIP is open-sourced at http://github.com/jiaming-wang/MIP.
Texts appearing in daily scenes that can be recognized by OCR (Optical Character Recognition) tools contain significant information, such as street name, product brand and prices. Two tasks -- text-based visual question answering and text-based image captioning, with a text extension from existing vision-language applications, are catching on rapidly. To address these problems, many sophisticated multi-modality encoding frameworks (such as heterogeneous graph structure) are being used. In this paper, we argue that a simple attention mechanism can do the same or even better job without any bells and whistles. Under this mechanism, we simply split OCR token features into separate visual- and linguistic-attention branches, and send them to a popular Transformer decoder to generate answers or captions. Surprisingly, we find this simple baseline model is rather strong -- it consistently outperforms state-of-the-art (SOTA) models on two popular benchmarks, TextVQA and all three tasks of ST-VQA, although these SOTA models use far more complex encoding mechanisms. Transferring it to text-based image captioning, we also surpass the TextCaps Challenge 2020 winner. We wish this work to set the new baseline for this two OCR text related applications and to inspire new thinking of multi-modality encoder design. Code is available at https://github.com/ZephyrZhuQi/ssbaseline
We consider the single image super-resolution problem in a more general case that the low-/high-resolution pairs and the down-sampling process are unavailable. Different from traditional super-resolution formulation, the low-resolution input is further degraded by noises and blurring. This complicated setting makes supervised learning and accurate kernel estimation impossible. To solve this problem, we resort to unsupervised learning without paired data, inspired by the recent successful image-to-image translation applications. With generative adversarial networks (GAN) as the basic component, we propose a Cycle-in-Cycle network structure to tackle the problem within three steps. First, the noisy and blurry input is mapped to a noise-free low-resolution space. Then the intermediate image is up-sampled with a pre-trained deep model. Finally, we fine-tune the two modules in an end-to-end manner to get the high-resolution output. Experiments on NTIRE2018 datasets demonstrate that the proposed unsupervised method achieves comparable results as the state-of-the-art supervised models.
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years. According to nature of different applications, designing appropriate CNN architectures is developed. However, customized architectures gather different features via treating all pixel points as equal to improve the performance of given application, which ignores the effects of local power pixel points and results in low training efficiency. In this paper, we propose an asymmetric CNN (ACNet) comprising an asymmetric block (AB), a memory enhancement block (MEB) and a high-frequency feature enhancement block (HFFEB) for image super-resolution. The AB utilizes one-dimensional asymmetric convolutions to intensify the square convolution kernels in horizontal and vertical directions for promoting the influences of local salient features for SISR. The MEB fuses all hierarchical low-frequency features from the AB via residual learning (RL) technique to resolve the long-term dependency problem and transforms obtained low-frequency features into high-frequency features. The HFFEB exploits low- and high-frequency features to obtain more robust super-resolution features and address excessive feature enhancement problem. Addditionally, it also takes charge of reconstructing a high-resolution (HR) image. Extensive experiments show that our ACNet can effectively address single image super-resolution (SISR), blind SISR and blind SISR of blind noise problems. The code of the ACNet is shown at https://github.com/hellloxiaotian/ACNet.