Do you want to publish a course? Click here

Ultra Diffuse Galaxies in the IC1459 Group from the VEGAS Survey

109   0   0.0 ( 0 )
 Added by Duncan Forbes
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using deep g,r,i imaging from the VEGAS survey, we have searched for ultra diffuse galaxies (UDGs) in the IC 1459 group. Assuming they are group members, we identify 9 galaxies with physical sizes and surface brightnesses that match the UDG criteria within our measurement uncertainties. They have mean colours of g--i = 0.6 and stellar masses of $sim$10$^8$ M$_{odot}$. Several galaxies appear to have associated systems of compact objects, e.g. globular clusters. Two UDGs contain a central bright nucleus, with a third UDG revealing a remarkable double nucleus. This appears to be the first reported detection of a double nucleus in a UDG - its origin is currently unclear.

rate research

Read More

Many ultra diffuse galaxies (UDGs) have now been identified in clusters of galaxies. However, the number of nearby UDGs suitable for detailed follow-up remain rare. Our aim is to begin to identify UDGs in the environments of nearby bright early-type galaxies from the VEGAS survey. Here we use a deep g band image of the NGC 5846 group, taken as part of the VEGAS survey, to search for UDGs. We found one object with properties of a UDG if it associated with the NGC 5846 group, which seems likely. The galaxy, we name NGC 5846$_$UDG1, has an absolute magnitude of M$_g$ = -14.2, corresponding to a stellar mass of $sim$10$^8$ M$_{odot}$. It also reveals a system of compact sources which are likely globular clusters. Based on the number of globular clusters detected we estimate a halo mass that is greater than 8$times$10$^{10}$ M$_{odot}$ for UDG1.
In this paper we report on the discovery of 27 low-surface brightness galaxies, of which 12 are candidate ultra-diffuse galaxy (UDG) in the Hydra I cluster, based on deep observations taken as part of the VST Early-type Galaxy Survey (VEGAS). This first sample of UDG candidates in the Hydra I cluster represents an important step in our project that aims to enlarge the number of confirmed UDGs and, through study of statistically relevant samples, constrain the nature and formation of UDGs. This study presents the main properties of this class of galaxies in the Hydra I cluster. For all UDGs, we analyse the light and colour distribution, and provide a census of the globular cluster (GC) systems around them. Given the limitations of a reliable GC selection based on two relatively close optical bands only, we find that half of the UDG candidates have a total GC population consistent with zero. Of the other half, two galaxies have a total population larger than zero at 2$sigma$ level. We estimate the stellar mass, the total number of GCs and the GC specific frequency ($S_N$). Most of the candidates span a range of stellar masses of $10^7-10^8$~M$_{odot}$. Based on the GC population of these newly discovered UDGs, we conclude that most of these galaxies have a standard or low dark matter content, with a halo mass of $leq 10^{10}$~M$_{odot}$.
150 - Rossella Ragusa 2021
Context. In this paper we present ultra deep images of the compact group of galaxies HCG 86 as part of the VEGAS survey. Aims. Our main goals are to estimate the amount of intragroup light (IGL), to study the light and color distributions in order to address the main formation process of the IGL component in groups of galaxies. Methods. We derived the azimuthally averaged surface brightness profiles in the g,r and i bands with g - r and r - i average colors and color profiles for all group members. By fitting the light distribution, we have extrapolated the contribution of the stellar halos plus the diffuse light from the brightest component of each galaxy. The results are compared with theoretical predictions. Results. The long integration time and wide area covered make our data deeper than previous literature studies of the IGL in compact groups of galaxies and allow us to produce an extended (~160 kpc) map of the IGL, down to a surface brightness level of about 30 mag/arcsec^2 in the g band. The IGL in HCG 86 is mainly in diffuse form and has average colors of g - r ~ 0.8 mag and r - i ~ 0.4 mag. The fraction of IGL in HCG 86 is ~ 16% of the total luminosity of the group, and this is consistent with estimates available for other compact groups and loose groups of galaxies of similar virial masses. A weak trend is present between the amount of IGL and the early-type to late-type galaxy ratio. Conclusions. By comparing the IGL fraction and colors with those predicted by simulations, the amount of IGL in HCG 86 would be the result of the disruption of satellites at an epoch of z ~ 0.4. At this redshift, observed colors are consistent with the scenario where the main contribution to the mass of the IGL comes from the intermediate-massive galaxies.
132 - Jin Koda 2015
We report the discovery of 854 ultra diffuse galaxies (UDGs) in the Coma cluster using deep R band images, with partial B, i, and Halpha band coverage, obtained with the Subaru telescope. Many of them (332) are Milky Way-sized with very large effective radii of r_e>1.5kpc. This study was motivated by the recent discovery of 47 UDGs by van-Dokkum et al. (2015); our discovery suggests >1,000 UDGs after accounting for the smaller Subaru field. The new UDGs show a distribution concentrated around the cluster center, strongly suggesting that the great majority are (likely longtime) cluster members. They are a passively evolving population, lying along the red sequence in the CM diagram with no Halpha signature. Star formation was, therefore, quenched in the past. They have exponential light profiles, effective radii re ~ 800 pc- 5 kpc, effective surface brightnesses mu_e(R)=25-28 mag arcsec-2, and stellar masses ~1x10^7 - 5x10^8Msun. There is also a population of nucleated UDGs. Some MW-sized UDGs appear closer to the cluster center than previously reported; their survival in the strong tidal field, despite their large sizes, possibly indicates a large dark matter fraction protecting the diffuse stellar component. The indicated baryon fraction ~<1% is less than the cosmic average, and thus the gas must have been removed from the possibly massive dark halo. The UDG population appears to be elevated in the Coma cluster compared to the field, indicating that the gas removal mechanism is related primarily to the cluster environment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا