Bootstrapping Matrix Quantum Mechanics


Abstract in English

Large $N$ matrix quantum mechanics is central to holographic duality but not solvable in the most interesting cases. We show that the spectrum and simple expectation values in these theories can be obtained numerically via a `bootstrap methodology. In this approach, operator expectation values are related by symmetries -- such as time translation and $SU(N)$ gauge invariance -- and then bounded with certain positivity constraints. We first demonstrate how this method efficiently solves the conventional quantum anharmonic oscillator. We then reproduce the known solution of large $N$ single matrix quantum mechanics. Finally, we present new results on the ground state of large $N$ two matrix quantum mechanics.

Download