Do you want to publish a course? Click here

COLDz: A High Space Density of Massive Dusty Starburst Galaxies ~1 Billion Years after the Big Bang

75   0   0.0 ( 0 )
 Added by Dominik Riechers
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of CO($J$=2$to$1) emission from three massive dusty starburst galaxies at $z$$>$5 through molecular line scans in the NSFs Karl G. Jansky Very Large Array (VLA) CO Luminosity Density at High Redshift (COLDz) survey. Redshifts for two of the sources, HDF 850.1 ($z$=5.183) and AzTEC-3 ($z$=5.298), were previously known. We revise a previous redshift estimate for the third source GN10 ($z$=5.303), which we have independently confirmed through detections of CO $J$=1$to$0, 5$to$4, 6$to$5, and [CII] 158 $mu$m emission with the VLA and the NOrthern Extended Milllimeter Array (NOEMA). We find that two currently independently confirmed CO sources in COLDz are optically dark, and that three of them are dust-obscured galaxies at $z$$>$5. Given our survey area of $sim$60 arcmin$^2$, our results appear to imply a $sim$6-55 times higher space density of such distant dusty systems within the first billion years after the Big Bang than previously thought. At least two of these $z$$>$5 galaxies show star-formation rate surface densities consistent with so-called maximum starbursts, but we find significant differences in CO excitation between them. This result may suggest that different fractions of the massive gas reservoirs are located in the dense, star-forming nuclear regions - consistent with the more extended sizes of the [CII] emission compared to the dust continuum and higher [CII]-to-far-infrared luminosity ratios in those galaxies with lower gas excitation. We thus find substantial variations in the conditions for star formation between $z$$>$5 dusty starbursts, which typically have dust temperatures $sim$57%$pm$25% warmer than starbursts at $z$=2-3 due to their enhanced star formation activity.



rate research

Read More

Deep observations are revealing a growing number of young galaxies in the first billion year of cosmic time. Compared to typical galaxies at later times, they show more extreme emission-line properties, higher star formation rates, lower masses, and smaller sizes. However, their faintness precludes studies of their chemical abundances and ionization conditions, strongly limiting our understanding of the physics driving early galaxy build-up and metal enrichment. Here we study a rare population of UV-selected, sub$-L^{*}$(z=3) galaxies at redshift 2.4$<z<$3.5 that exhibit all the rest-frame properties expected from primeval galaxies. These low-mass, highly-compact systems are rapidly-forming galaxies able to double their stellar mass in only few tens million years. They are characterized by very blue UV spectra with weak absorption features and bright nebular emission lines, which imply hard radiation fields from young hot massive stars. Their highly-ionized gas phase has strongly sub-solar carbon and oxygen abundances, with metallicities more than a factor of two lower than that found in typical galaxies of similar mass and star formation rate at $zlesssim$2.5. These young galaxies reveal an early and short stage in the assembly of their galactic structures and their chemical evolution, a vigorous phase which is likely to be dominated by the effects of gas-rich mergers, accretion of metal-poor gas and strong outflows.
72 - Marcel Neeleman 2020
Massive disk galaxies like the Milky Way are expected to form at late times in traditional models of galaxy formation, but recent numerical simulations suggest that such galaxies could form as early as a billion years after the Big Bang through the accretion of cold material and mergers. Observationally, it has been difficult to identify disk galaxies in emission at high redshift, in order to discern between competing models of galaxy formation. Here we report imaging, with a resolution of about 1.3 kiloparsecs, of the 158-micrometre emission line from singly ionized carbon, the far-infrared dust continuum and the near-ultraviolet continuum emission from a galaxy at a redshift of 4.2603, identified by detecting its absorption of quasar light. These observations show that the emission arises from gas inside a cold, dusty, rotating disk with a rotational velocity of 272 kilometres per second. The detection of emission from carbon monoxide in the galaxy yields a molecular mass that is consistent with the estimate from the ionized carbon emission of about 72 billion solar masses. The existence of such a massive, rotationally supported, cold disk galaxy when the Universe was only 1.5 billion years old favours formation through either cold-mode accretion or mergers, although its large rotational velocity and large content of cold gas remain challenging to reproduce with most numerical simulations.
294 - P.L. Capak , C. Carilli , G. Jones 2015
Evolution in the measured rest frame ultraviolet spectral slope and ultraviolet to optical flux ratios indicate a rapid evolution in the dust obscuration of galaxies during the first 3 billion years of cosmic time (z>4). This evolution implies a change in the average interstellar medium properties, but the measurements are systematically uncertain due to untested assumptions, and the inability to measure heavily obscured regions of the galaxies. Previous attempts to directly measure the interstellar medium in normal galaxies at these redshifts have failed for a number of reasons with one notable exception. Here we report measurements of the [CII] gas and dust emission in 9 typical (~1-4L*) star-forming galaxies ~1 billon years after the big bang (z~5-6). We find these galaxies have >12x less thermal emission compared with similar systems ~2 billion years later, and enhanced [CII] emission relative to the far-infrared continuum, confirming a strong evolution in the interstellar medium properties in the early universe. The gas is distributed over scales of 1-8 kpc, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z<3 and being comparable to local low-metallicity systems.
We report two secure ($z=3.775, 4.012$) and one tentative ($zapprox3.767$) spectroscopic confirmations of massive and quiescent galaxies through $K$-band observations with Keck/MOSFIRE and VLT/X-Shooter. The stellar continuum emission, the absence of strong nebular emission lines and the lack of significant far-infrared detections confirm the passive nature of these objects, disfavoring the alternative solution of low-redshift dusty star-forming interlopers. We derive stellar masses of $mathrm{log}(M_{star}/M_odot)sim11$ and ongoing star formation rates placing these galaxies $gtrsim 1-2$ dex below the main sequence at their redshifts. The adopted parametrization of the star formation history suggests that these sources experienced a strong ($langle rm SFR rangle sim 1200-3500,M_odot,mathrm{yr}^{-1}$) and short ($sim 50$ Myr) burst of star formation, peaking $sim 150-500$ Myr before the time of observation, all properties reminiscent of the characteristics of sub-millimeter galaxies (SMGs) at $z>4$. We investigate this connection by comparing the comoving number densities and the properties of these two populations. We find a fair agreement only with the deepest sub-mm surveys detecting not only the most extreme starbursts, but also more normal galaxies. We support these findings by further exploring the Illustris-TNG cosmological simulation, retrieving populations of both fully quenched massive galaxies at $zsim3-4$ and SMGs at $zsim4-5$, with number densities and properties in agreement with the observations at $zsim3$, but in increasing tension at higher redshift. Nevertheless, as suggested by the observations, not all the progenitors of quiescent galaxies at these redshifts shine as bright SMGs in their past and, similarly, not all bright SMGs quench by $zsim3$, both fractions depending on the threshold assumed to define the SMGs themselves.
Cosmological models predict that galaxies forming in the early Universe experience a chaotic phase of gas accretion and star formation, followed by gas ejection due to feedback processes. Galaxy bulges may assemble later via mergers or internal evolution. Here we present submillimeter observations (with spatial resolution of 700 parsecs) of ALESS 073.1, a starburst galaxy at redshift z~5, when the Universe was 1.2 billion years old. This galaxys cold gas forms a regularly rotating disk with negligible noncircular motions. The galaxy rotation curve requires the presence of a central bulge in addition to a star-forming disk. We conclude that massive bulges and regularly rotating disks can form more rapidly in the early Universe than predicted by models of galaxy formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا