Do you want to publish a course? Click here

Experience Grounds Language

77   0   0.0 ( 0 )
 Added by Ari Holtzman
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Language understanding research is held back by a failure to relate language to the physical world it describes and to the social interactions it facilitates. Despite the incredible effectiveness of language processing models to tackle tasks after being trained on text alone, successful linguistic communication relies on a shared experience of the world. It is this shared experience that makes utterances meaningful. Natural language processing is a diverse field, and progress throughout its development has come from new representational theories, modeling techniques, data collection paradigms, and tasks. We posit that the present success of representation learning approaches trained on large, text-only corpora requires the parallel tradition of research on the broader physical and social context of language to address the deeper questions of communication.



rate research

Read More

Is it possible to use natural language to intervene in a models behavior and alter its prediction in a desired way? We investigate the effectiveness of natural language interventions for reading-comprehension systems, studying this in the context of social stereotypes. Specifically, we propose a new language understanding task, Linguistic Ethical Interventions (LEI), where the goal is to amend a question-answering (QA) models unethical behavior by communicating context-specific principles of ethics and equity to it. To this end, we build upon recent methods for quantifying a systems social stereotypes, augmenting them with different kinds of ethical interventions and the desired model behavior under such interventions. Our zero-shot evaluation finds that even todays powerful neural language models are extremely poor ethical-advice takers, that is, they respond surprisingly little to ethical interventions even though these interventions are stated as simple sentences. Few-shot learning improves model behavior but remains far from the desired outcome, especially when evaluated for various types of generalization. Our new task thus poses a novel language understanding challenge for the community.
Recent advances in reinforcement learning have shown its potential to tackle complex real-life tasks. However, as the dimensionality of the task increases, reinforcement learning methods tend to struggle. To overcome this, we explore methods for representing the semantic information embedded in the state. While previous methods focused on information in its raw form (e.g., raw visual input), we propose to represent the state using natural language. Language can represent complex scenarios and concepts, making it a favorable candidate for representation. Empirical evidence, within the domain of ViZDoom, suggests that natural language based agents are more robust, converge faster and perform better than vision based agents, showing the benefit of using natural language representations for reinforcement learning.
We review three limitations of BLEU and ROUGE -- the most popular metrics used to assess reference summaries against hypothesis summaries, come up with criteria for what a good metric should behave like and propose concrete ways to use recent Transformers-based Language Models to assess reference summaries against hypothesis summaries.
It is challenging to perform lifelong language learning (LLL) on a stream of different tasks without any performance degradation comparing to the multi-task counterparts. To address this issue, we present Lifelong Language Knowledge Distillation (L2KD), a simple but efficient method that can be easily applied to existing LLL architectures in order to mitigate the degradation. Specifically, when the LLL model is trained on a new task, we assign a teacher model to first learn the new task, and pass the knowledge to the LLL model via knowledge distillation. Therefore, the LLL model can better adapt to the new task while keeping the previously learned knowledge. Experiments show that the proposed L2KD consistently improves previous state-of-the-art models, and the degradation comparing to multi-task models in LLL tasks is well mitigated for both sequence generation and text classification tasks.
We present a method for combining multi-agent communication and traditional data-driven approaches to natural language learning, with an end goal of teaching agents to communicate with humans in natural language. Our starting point is a language model that has been trained on generic, not task-specific language data. We then place this model in a multi-agent self-play environment that generates task-specific rewards used to adapt or modulate the model, turning it into a task-conditional language model. We introduce a new way for combining the two types of learning based on the idea of reranking language model samples, and show that this method outperforms others in communicating with humans in a visual referential communication task. Finally, we present a taxonomy of different types of language drift that can occur alongside a set of measures to detect them.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا