Do you want to publish a course? Click here

Sub-galactic scaling relations between X-ray luminosity, star-formation rate, and stellar mass

64   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

X-ray luminosity ($L_X$) originating from high-mass X-ray binaries (HMXBs) is tightly correlated with the host galaxys star-formation rate (SFR). We explore this connection at sub-galactic scales spanning ${sim}$7 dex in SFR and ${sim}$8 dex in specific SFR (sSFR). There is good agreement with established relations down to ${rm SFR {simeq} 10^{-3},M_odot , yr^{-1}}$, below which an excess of X-ray luminosity emerges. This excess likely arises from low mass X-ray binaries. The intrinsic scatter of the $L_X$-SFR relation is constant, not correlated with SFR. Different star formation indicators scale with $L_X$ in different ways, and we attribute the differences to the effect of star formation history. The SFR derived from H$alpha$ shows the tightest correlation with X-ray luminosity because H$alpha$ emission probes stellar populations with ages similar to HMXB formation timescales, but the H$alpha$-based SFR is reliable only for $rm sSFR{>}10^{-12},M_odot , yr^{-1}/M_odot$.



rate research

Read More

We investigate the scaling relations between the X-ray and the thermal Sunyaev-Zeldovich Effect (SZE) properties of clusters of galaxies, using data taken during 2007 by the Y.T. Lee Array for Microwave Background Anisotropy (AMiBA) at 94 GHz for the six clusters A1689, A1995, A2142, A2163, A2261, and A2390. The scaling relations relate the integrated Compton-y parameter Y_{2500} to the X-ray derived gas temperature T_{e}, total mass M_{2500}, and bolometric luminosity L_X within r_{2500}. Our results for the power-law index and normalization are both consistent with the self-similar model and other studies in the literature except for the Y_{2500}-L_X relation, for which a physical explanation is given though further investigation may be still needed. Our results not only provide confidence for the AMiBA project but also support our understanding of galaxy clusters.
In this study we investigate the relationship between the star formation rate, SFR, and AGN luminosity, L(AGN), for ~2000 X-ray detected AGN. The AGN span over three orders of magnitude in X-ray luminosity (10^(42) < L(2-8keV) < 10^(45.5) erg/s) and are in the redshift range z = 0.2 - 2.5. Using infrared (IR) photometry (8 - 500um), including deblended Spitzer and Herschel images and taking into account photometric upper limits, we decompose the IR spectral energy distributions into AGN and star formation components. Using the IR luminosities due to star formation, we investigate the average SFRs as a function of redshift and AGN luminosity. In agreement with previous studies, we find a strong evolution of the average SFR with redshift, tracking the observed evolution of the overall star forming galaxy population. However, we find that the relationship between the average SFR and AGN luminosity is flat at all redshifts and across all the AGN luminosities investigated; in comparison to previous studies, we find less scatter amongst the average SFRs across the wide range of AGN luminosities investigated. By comparing to empirical models, we argue that the observed flat relationship is due to short timescale variations in AGN luminosity, driven by changes in the mass accretion rate, which wash out any underlying correlations between SFR and L(AGN). Furthermore, we show that the exact form of the predicted relationship between SFR and AGN luminosity (and its normalisation) is highly sensitive to the assumed intrinsic Eddington ratio distribution.
351 - R. Genzel , L.J. Tacconi , D. Lutz 2014
We combine molecular gas masses inferred from CO emission in 500 star forming galaxies (SFGs) between z=0 and 3, from the IRAM-COLDGASS, PHIBSS1/2 and other surveys, with gas masses derived from Herschel far-IR dust measurements in 512 galaxy stacks over the same stellar mass/redshift range. We constrain the scaling relations of molecular gas depletion time scale (tdepl) and gas to stellar mass ratio (Mmolgas/M*) of SFGs near the star formation main-sequence with redshift, specific star formation rate (sSFR) and stellar mass (M*). The CO- and dust-based scaling relations agree remarkably well. This suggests that the CO-H2 mass conversion factor varies little within 0.6dex of the main sequence (sSFR(ms,z,M*)), and less than 0.3dex throughout this redshift range. This study builds on and strengthens the results of earlier work. We find that tdepl scales as (1+z)^-0.3 *(sSFR/sSFR(ms,z,M*))^-0.5, with little dependence on M*. The resulting steep redshift dependence of Mmolgas/M* ~(1+z)^3 mirrors that of the sSFR and probably reflects the gas supply rate. The decreasing gas fractions at high M* are driven by the flattening of the SFR-M* relation. Throughout the redshift range probed a larger sSFR at constant M* is due to a combination of an increasing gas fraction and a decreasing depletion time scale. As a result galaxy integrated samples of the Mmolgas-SFR rate relation exhibit a super-linear slope, which increases with the range of sSFR. With these new relations it is now possible to determine Mmolgas with an accuracy of 0.1dex in relative terms, and 0.2dex including systematic uncertainties.
We investigate X-ray binary (XRB) luminosity function (XLF) scaling relations for Chandra detected populations of low-mass XRBs (LMXBs) within the footprints of 24 early-type galaxies. Our sample includes Chandra and HST observed galaxies at D < 25 Mpc that have estimates of the globular cluster (GC) specific frequency (SN) reported in the literature. As such, we are able to directly classify X-ray-detected sources as being either coincident with unrelated background/foreground objects, GCs, or sources that are within the fields of the galaxy targets. We model the GC and field LMXB population XLFs for all galaxies separately, and then construct global models characterizing how the LMXB XLFs vary with galaxy stellar mass and SN. We find that our field LMXB XLF models require a component that scales with SN, and has a shape consistent with that found for the GC LMXB XLF. We take this to indicate that GCs are seeding the galactic field LMXB population, through the ejection of GC-LMXBs and/or the diffusion of the GCs in the galactic fields themselves. However, we also find that an important LMXB XLF component is required for all galaxies that scales with stellar mass, implying that a substantial population of LMXBs are formed in situ, which dominates the LMXB population emission for galaxies with SN < 2. For the first time, we provide a framework quantifying how directly-associated GC LMXBs, GC-seeded LMXBs, and in-situ LMXBs contribute to LMXB XLFs in the broader early-type galaxy population.
We have measured the relationships between HI mass, stellar mass and star formation rate using the HI Parkes All Sky-Survey Catalogue (HICAT) and the Wide-field Infrared Survey Explorer (WISE). Of the 3,513 HICAT sources, we find 3.4 micron counterparts for 2,896 sources (80%) and provide new WISE matched aperture photometry for these galaxies. For our principal sample of spiral galaxies with W1 $le$ 10 mag and z $le$ 0.01, we identify HI detections for 93% of the sample. We measure lower HI-stellar mass relationships that HI selected samples that do not include spiral galaxies with little HI gas. Our observations of the spiral sample show that HI mass increases with stellar mass with a power-law index 0.35; however, this value is dependent on T-type, which affects both the median and the dispersion of HI mass. We also observe an upper limit on the HI gas fraction, which is consistent with a halo spin parameter model. We measure the star formation efficiency of spiral galaxies to be constant 10$^{-9.57}$ yr$^{-1}$ $pm$ 0.4 dex for 2.5 orders of magnitude in stellar mass, despite the higher stellar mass spiral showing evidence of quenched star formation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا