Non-perturbative Defect One-Point Functions in Planar $mathcal{N}=4$ Super-Yang-Mills


Abstract in English

The four dimensional $mathcal{N}=4$ super-Yang-Mills (SYM) theory exhibits rich dynamics in the presence of codimension-one conformal defects. The new structure constants of the extended operator algebra consist of one-point functions of local operators which are nonvanishing due to the defect insertion and carry nontrivial coupling dependence. We study an important class of half-BPS superconformal defects engineered by D5 branes that share three common directions with the D3 branes and involve Nahm pole configurations for the SYM fields on the D3 brane worldvolume. In the planar large $N$ limit, we obtain non-perturbative results in the t Hooft coupling $lambda$ for the defect one-point functions of both BPS and non-BPS operators, building upon recent progress in localization and integrability methods. For BPS operator insertions in the SYM with D5-brane type boundary or interface, we derive an effective two dimensional defect-Yang-Mills (dYM) theory from supersymmetric localization, which gives an efficient way to extract defect observables and generates a novel matrix model for the defect one-point function. By solving the matrix model in the large $N$ limit, we obtain exact results in $lambda$ which interpolate between perturbative Feynman diagram contributions in the weak coupling limit and IIB string theory predictions on $AdS_5times S^5$ in the strong coupling regime, providing a precision test of AdS/CFT with interface defects. For general non-BPS operators, we develop a non-perturbative bootstrap-type program for integrable boundary states on the worldsheet of the IIB string theory, corresponding to the interface defects in the planar SYM. Such integrable boundary states are constrained by a set of general consistency conditions for which we present explicit solutions that reproduce and extend the known results at weak coupling from integrable spin-chain methods.

Download