Do you want to publish a course? Click here

Omega Centauri: weak MgH-band in red giants directly trace the helium content

174   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

High spectral resolution and high signal-to-noise ratio optical spectra of red giants in the globular cluster Omega Centauri are analysed for stellar parameters and chemical abundances of 15 elements including helium by either line equivalent widths or synthetic spectrum analyses. The simultaneous abundance analysis of MgH and Mg lines adopting theoretical photospheres and a combination of He/H$-$ratios proved to be the only powerful probe to evaluate helium abundances of red giants cooler than 4400 K, wherein otherwise helium line transitions (He {scs I} 10830 and 5876 AA) present for a direct spectral line analysis. The impact of helium-enhanced model photospheres on the resulting abundance ratios are smaller than 0.15 dex, in agreement with past studies. The first indirect spectroscopic helium abundances measured in this paper for the most metal-rich cluster members reveal the discovery of seven He-enhanced giants ($Delta$$Y=+$0.15$pm$0.04), the largest such sample found spectroscopically to date. The average metallicity of $-$0.79$pm$0.06 dex and abundances for O, Na, Al, Si, Ca, Ti, Ni, Ba, and La are consistent with values found for the red giant branch (RGB-a) and subgiant branch (SGB-a) populations of Omega Centauri, suggesting an evolutionary connection among samples. The He-enhancement in giants is associated with larger $s$-process elemental abundances, which correlate with Al and anticorrelate with O. These results support the formation of He-enhanced, metal-rich population of Omega Centauri out of the interstellar medium enriched with the ejecta of fast rotating massive stars, binaries exploding as supernovae and asymptotic giant branch (AGB) stars.



rate research

Read More

225 - B. P. Hema 2020
The helium-enriched (He-enriched) metal-rich red giants of Omega Centauri, discovered by Hema and Pandey using the low-resolution spectra from the Vainu Bappu Telescope (VBT) and confirmed by the analyses of the high-resolution spectra obtained from the HRS-South African Large Telescope (SALT) for LEID 34225 and LEID 39048, are reanalysed here to determine their degree of He-enhancement/hydrogen-deficiency (H-deficiency). The observed MgH band combined with model atmospheres with differing He/H ratios are used for the analyses. The He/H ratios of these two giants are determined by enforcing the fact that the derived Mg abundances from the MgI lines and from the subordinate lines of the MgH band must be same for the adopted model atmosphere. The estimated He/H ratios for LEID 34225 and LEID 39048 are 0.15+/-0.04 and 0.20+/-0.04, respectively, whereas the normal He/H ratio is 0.10. Following the same criteria for the analyses of the other two comparison stars (LEID 61067 and LEID 32169), a normal He/H ratio of 0.10 is obtained. The He/H ratio of 0.15-0.20 corresponds to a mass fraction of helium (Z(He)=Y) of about 0.375-0.445. The range of helium enhancement and the derived metallicity of the program stars are in line with those determined for Omega Cen blue main-sequence stars. Hence, our study provides the missing link for the evolutionary track of the metal-rich helium-enhanced population of Omega Centuari. This research work is the very first spectroscopic determination of the amount of He-enhancement in the metal-rich red giants of Omega Centauri using the MgI and MgH lines.
Red giant stars are perhaps the most important type of stars for Galactic and extra-galactic archaeology: they are luminous, occur in all stellar populations, and their surface temperatures allow precise abundance determinations for many different chemical elements. Yet, the full star formation and enrichment history of a galaxy can be traced directly only if two key observables can be determined for large stellar samples - age and chemical composition. While spectroscopy is a powerful method to analyse the detailed abundances of stars, stellar ages are the missing link in the chain, since they are not a direct observable. However, spectroscopy should be able to estimate stellar masses, which for red giants directly infer ages provided their chemical composition is known. Here we establish a new empirical relation between the shape of the hydrogen line in the observed spectra of red giants and stellar mass determined from asteroseismology. The relation allows to determine stellar masses and ages with the accuracy of 10-15%. The method can be used with confidence for stars in the following range of stellar parameters: 4000 < Teff < 5000 K, 0.5 < log g < 3.5, -2.0 < [Fe/H] < 0.3, and luminosities log L/LSun < 2.5. Our analysis provides observational evidence that the Halpha spectral characteristics of red giant stars are tightly correlated with their mass and therefore their age. We also show that the method samples well all stellar populations with ages above 1 Gyr. Targeting bright giants, the method allows to obtain simultaneous age and chemical abundance information far deeper than would be possible with asteroseismology, extending the possible survey volume to remote regions of the Milky Way and even to neighbouring galaxies like Andromeda or the Magellanic Clouds already with present instrumentation, like VLT and Keck facilities.
We present Li, Na, Al and Fe abundances of 199 lower red giant branch stars members of the stellar system Omega Centauri, using high-resolution spectra acquired with FLAMES at the Very Large Telescope. The A(Li) distribution is peaked at A(Li) ~ 1 dex with a prominent tail toward lower values. The peak of the distribution well agrees with the lithium abundances measured in lower red giant branch stars in globular clusters and Galactic field stars. Stars with A(Li) ~ 1 dex are found at metallicities lower than [Fe/H] ~ -1.3 dex but they disappear at higher metallicities. On the other hand, Li-poor stars are found at all the metallicities. The most metal-poor stars exhibit a clear Li-Na anticorrelation, with about 30% of the sample with A(Li) lower than ~ 0.8 dex, while in normal globular clusters these stars represent a small fraction. Most of the stars with [Fe/H] > -1.6 dex are Li-poor and Na-rich. The Li depletion measured in these stars is not observed in globular clusters with similar metallicities and we demonstrate that it is not caused by the proposed helium enhancements and/or young ages. Hence, these stars formed from a gas already depleted in lithium. Finally, we note that Omega Centauri includes all the populations (Li-normal/Na-normal, Li-normal/Na-rich and Li-poor/Na-rich stars) observed, to a lesser extent, in mono-metallic GCs.
We present abundances of several light, alpha, Fe-peak, and neutron-capture elements for 66 red giant branch (RGB) stars in the Galactic globular cluster Omega Centauri. Our observations lie in the range 12.0<V<13.5 and focus on the intermediate and metal-rich RGBs. We find that there are at least four peaks in the metallicity distribution function at [Fe/H]=-1.75, -1.45, -1.05, and -0.75, which correspond to about 55%, 30%, 10%, and 5% of our sample, respectively. Additionally, the most metal-rich stars are the most centrally located. Na and Al are correlated despite exhibiting star-to-star dispersions of more than a factor of 10, but the distribution of those elements appears to be metallicity dependent and are divided at [Fe/H]~-1.2. About 40-50% of stars with [Fe/H]<-1.2 have Na and Al abundances consistent with production solely in Type II supernovae and match observations of disk and halo stars at comparable metallicity. The remaining metal-poor stars are enhanced in Na and Al compared to their disk and halo counterparts and are mostly consistent with predicted yields from >5 M_sun asymptotic giant branch (AGB) stars. At [Fe/H]>-1.2, more than 75% of the stars are Na/Al enhanced and may have formed almost exclusively from AGB ejecta. Most of these stars are enhanced in Na by at least 0.2 dex for a given Al abundance than would be expected based on normal globular cluster values. All stars in our sample are alpha-rich and have solar-scaled Fe-peak abundances. Eu does not vary extensively as a function of metallicity; however, [La/Fe] varies from about -0.4 to +2 and stars with [Fe/H]>-1.5 have [La/Eu] values indicating domination by the s-process. A quarter of our sample have [La/Eu]>+1 and may be the result of mass transfer in a binary system.
183 - A. Calamida 2009
We present new intermediate-band Stroemgren photometry based on more than 300 u,v,b,y images of the Galactic globular cluster Omega Cen. Optical data were supplemented with new multiband near-infrared (NIR) photometry (350 J,H,K_s images). The final optical-NIR catalog covers a region of more than 20*20 arcmin squared across the cluster center. We use different optical-NIR color-color planes together with proper motion data available in the literature to identify candidate cluster red giant (RG) stars. By adopting different Stroemgren metallicity indices we estimate the photometric metallicity for ~4,000 RGs, the largest sample ever collected. The metallicity distributions show multiple peaks ([Fe/H]_phot=-1.73+/-0.08,-1.29+/-0.03,-1.05+/-0.02,-0.80+/-0.04,-0.42+/-0.12 and -0.07+/-0.08 dex) and a sharp cut-off in the metal-poor tail ([Fe/H]_phot<=-2 dex) that agree quite well with spectroscopic measurements. We identify four distinct sub-populations,namely metal-poor (MP,[Fe/H]<=-1.49), metal-intermediate (MI,-1.49<[Fe/H]<=-0.93), metal-rich (MR,-0.95<[Fe/H]<=-0.15) and solar metallicity (SM,[Fe/H]~0). The last group includes only a small fraction of stars (~8+/-5%) and should be confirmed spectroscopically. Moreover, using the difference in metallicity based on different photometric indices, we find that the 19+/-1% of RGs are candidate CN-strong stars. This fraction agrees quite well with recent spectroscopic estimates and could imply a large fraction of binary stars. The Stroemgren metallicity indices display a robust correlation with alpha-elements ([Ca+Si/H]) when moving from the metal-intermediate to the metal-rich regime ([Fe/H]>-1.7 dex).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا