Do you want to publish a course? Click here

Locality of Interatomic Interactions in Self-Consistent Tight Binding Models

82   0   0.0 ( 0 )
 Added by Jack Thomas
 Publication date 2020
  fields Physics
and research's language is English
 Authors Jack Thomas




Ask ChatGPT about the research

A key starting assumption in many classical interatomic potential models for materials is a site energy decomposition of the potential energy surface into contributions that only depend on a small neighbourhood. Under a natural stability condition, we construct such a spatial decomposition for self-consistent tight binding models, extending recent results for linear tight binding models to the non-linear setting.



rate research

Read More

The tight binding model is a minimalistic electronic structure model for predicting properties of materials and molecules. For insulators at zero Fermi-temperature we show that the potential energy surface of this model can be decomposed into exponentially localised site energy contributions, thus providing qualitatively sharp estimates on the interatomic interaction range which justifies a range of multi-scale models. For insulators at finite Fermi-temperature we obtain locality estimates that are uniform in the zero-temperature limit. A particular feature of all our results is that they depend only weakly on the point spectrum. Numerical tests confirm our analytical results. This work extends and strengthens (Chen, Ortner 2016) and (Chen, Lu, Ortner 2018) for finite temperature models.
We consider atomistic geometry relaxation in the context of linear tight binding models for point defects. A limiting model as Fermi-temperature is sent to zero is formulated, and an exponential rate of convergence for the nuclei configuration is established. We also formulate the thermodynamic limit model at zero Fermi-temperature, extending the results of [H. Chen, J. Lu, C. Ortner. Arch. Ration. Mech. Anal., 2018]. We discuss the non-trivial relationship between taking zero temperature and thermodynamic limits in the finite Fermi-temperature models.
We study the different ways of introducing light-matter interaction in first-principle tight-binding (TB) models. The standard way of describing optical properties is the velocity gauge, defined by linear coupling to the vector potential. In finite systems a transformation to represent the electromagnetic radiation by the electric field instead is possible, albeit subtleties arise in periodic systems. The resulting dipole gauge is a multi-orbital generalization of Peierls substitution. In this work, we investigate accuracy of both pathways, with particular emphasis on gauge invariance, for TB models constructed from maximally localized Wannier functions. Focusing on paradigmatic two-dimensional materials, we construct first-principle models and calculate the response to electromagnetic fields in linear response and for strong excitations. Benchmarks against fully converged first-principle calculations allow for ascertaining the accuracy of the TB models. We find that the dipole gauge provides a more accurate description than the velocity gauge in all cases. The main deficiency of the velocity gauge is an imperfect cancellation of paramagnetic and diamagnetic current. Formulating a corresponding sum rule however provides a way to explicitly enforce this cancellation. This procedure corrects the TB models in the velocity gauge, yielding excellent agreement with dipole gauge and thus gauge invariance.
We present an accurate ab initio tight-binding model, capable of describing the dynamics of Dirac points in tunable honeycomb optical lattices following a recent experimental realization [L. Tarruell et al., Nature 483, 302 (2012)]. Our scheme is based on first-principle maximally localized Wannier functions for composite bands. The tunneling coefficients are calculated for different lattice configurations, and the spectrum properties are well reproduced with high accuracy. In particular, we show which tight binding description is needed in order to accurately reproduce the position of Dirac points and the dispersion law close to their merging, for different laser intensities.
It is a generalized belief that there are no thermal phase transitions in short range 1D quantum systems. However, the only known case for which this is rigorously proven is for the particular case of finite range translational invariant interactions. The proof was obtained by Araki in his seminal paper of 1969 as a consequence of pioneering locality estimates for the time-evolution operator that allowed him to prove its analiticity on the whole complex plane, when applied to a local observable. However, as for now there is no mathematical proof of the abscence of 1D thermal phase transitions if one allows exponential tails in the interactions. In this work we extend Arakis result to include exponential (or faster) tails. Our main result is the analyticity of the time-evolution operator applied on a local observable on a suitable strip around the real line. As a consequence we obtain that thermal states in 1D exhibit exponential decay of correlations above a threshold temperature that decays to zero with the exponent of the interaction decay, recovering Arakis result as a particular case. Our result however still leaves open the possibility of 1D thermal short range phase transitions. We conclude with an application of our result to the spectral gap problem for Projected Entangled Pair States (PEPS) on 2D lattices, via the holographic duality due to Cirac et al.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا