An alternative interpretation of GW190412 as a binary black hole merger with a rapidly spinning secondary


Abstract in English

The LIGO-Virgo collaboration recently reported the properties of GW190412, a binary black hole merger with unequal component masses (mass ratio $0.25^{+0.06}_{-0.04}$ when using the EOBNR PHM approximant) and a non-vanishing effective spin aligned with the orbital angular momentum. They used uninformative priors to infer that the more massive black hole had a dimensionless spin magnitude between 0.17 and 0.59 at 90% confidence. We argue that, within the context of isolated binary evolution, it is more natural to assume a priori that the first-born, more massive black hole has a negligible spin, while the spin of the less massive black hole is preferentially aligned with the orbital angular momentum if it is spun up by tides. Under this astrophysically motivated prior, we conclude that the lower mass black hole had a dimensionless spin component between 0.64 and 0.99 along the orbital angular momentum.

Download