Short-cadence K2 observations of an accretion-state transition in the polar Tau 4


Abstract in English

The Kepler spacecraft observed a total of only four AM Herculis cataclysmic variable stars during its lifetime. We analyze the short-cadence K2 light curve of one of those systems, Tau 4 (RX J0502.8+1624), which underwent a serendipitous jump from a low-accretion state into a high state during the final days of the observation. Apart from one brief flare, there was no evidence of accretion during the 70 d of observations of the low state. As Tau 4 transitioned into a high state, the resumption of accretion was very gradual, taking approximately six days (~90 binary orbits). We supplement Tau 4s K2 light curve with time-resolved spectroscopy obtained in both high and low states of accretion. High-excitation lines, such as He II 468.6 nm, were extraordinarily weak, even when the system was actively accreting. This strongly suggests the absence of an accretion shock, placing Tau 4 in the bombardment regime predicted for AM Herculis systems with low accretion rates. In both the high-state and low-state spectra, Zeeman absorption features from the white dwarfs photosphere are present and reveal a surface-averaged field strength of $15pm2$ MG. Remarkably, the high-state spectra also show Zeeman-split emission lines produced in a region with a field strength of $12pm1$ MG. Zeeman emission has not been previously reported in an AM Herculis system, and we propose that the phenomenon is caused by a temperature inversion in the WDs atmosphere near the accretion region.

Download