Given a set $P$ of $n$ red and blue points in the plane, a emph{planar bichromatic spanning tree} of $P$ is a spanning tree of $P$, such that each edge connects between a red and a blue point, and no two edges intersect. In the bottleneck planar bichromatic spanning tree problem, the goal is to find a planar bichromatic spanning tree $T$, such that the length of the longest edge in $T$ is minimized. In this paper, we show that this problem is NP-hard for points in general position. Moreover, we present a polynomial-time $(8sqrt{2})$-approximation algorithm, by showing that any bichromatic spanning tree of bottleneck $lambda$ can be converted to a planar bichromatic spanning tree of bottleneck at most $8sqrt{2}lambda$.