Do you want to publish a course? Click here

CWY Parametrization: a Solution for Parallelized Optimization of Orthogonal and Stiefel Matrices

65   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We introduce an efficient approach for optimization over orthogonal groups on highly parallel computation units such as GPUs or TPUs. As in earlier work, we parametrize an orthogonal matrix as a product of Householder reflections. However, to overcome low parallelization capabilities of computing Householder reflections sequentially, we propose employing an accumulation scheme called the compact WY (or CWY) transform -- a compact parallelization-friendly matrix representation for the series of Householder reflections. We further develop a novel Truncated CWY (or T-CWY) approach for Stiefel manifold parametrization which has a competitive complexity and, again, yields benefits when computed on GPUs and TPUs. We prove that our CWY and T-CWY methods lead to convergence to a stationary point of the training objective when coupled with stochastic gradient descent. We apply our methods to train recurrent neural network architectures in the tasks of neural machine translation and video prediction.

rate research

Read More

93 - Firas Hamze 2021
We present a methodology for parallel acceleration of learning in the presence of matrix orthogonality and unitarity constraints of interest in several branches of machine learning. We show how an apparently sequential elementary rotation parametrization can be restructured into blocks of commutative operations using a well-known tool for coloring the edges of complete graphs, in turn widely applied to schedule round-robin (all-against-all) sports tournaments. The resulting decomposition admits an algorithm to compute a fully-parametrized orthogonal matrix from its rotation parameters in $O(n)$ sequential steps and one to compute the gradient of a training loss with respect to its parameters in $O(nlog n)$ steps. We discuss parametric restrictions of interest to generative modeling and present promising performance results with a prototype GPU implementation.
Orthogonal matrix has shown advantages in training Recurrent Neural Networks (RNNs), but such matrix is limited to be square for the hidden-to-hidden transformation in RNNs. In this paper, we generalize such square orthogonal matrix to orthogonal rectangular matrix and formulating this problem in feed-forward Neural Networks (FNNs) as Optimization over Multiple Dependent Stiefel Manifolds (OMDSM). We show that the rectangular orthogonal matrix can stabilize the distribution of network activations and regularize FNNs. We also propose a novel orthogonal weight normalization method to solve OMDSM. Particularly, it constructs orthogonal transformation over proxy parameters to ensure the weight matrix is orthogonal and back-propagates gradient information through the transformation during training. To guarantee stability, we minimize the distortions between proxy parameters and canonical weights over all tractable orthogonal transformations. In addition, we design an orthogonal linear module (OLM) to learn orthogonal filter banks in practice, which can be used as an alternative to standard linear module. Extensive experiments demonstrate that by simply substituting OLM for standard linear module without revising any experimental protocols, our method largely improves the performance of the state-of-the-art networks, including Inception and residual networks on CIFAR and ImageNet datasets. In particular, we have reduced the test error of wide residual network on CIFAR-100 from 20.04% to 18.61% with such simple substitution. Our code is available online for result reproduction.
We introduce a novel approach to perform first-order optimization with orthogonal and unitary constraints. This approach is based on a parametrization stemming from Lie group theory through the exponential map. The parametrization transforms the constrained optimization problem into an unconstrained one over a Euclidean space, for which common first-order optimization methods can be used. The theoretical results presented are general enough to cover the special orthogonal group, the unitary group and, in general, any connected compact Lie group. We discuss how this and other parametrizations can be computed efficiently through an implementation trick, making numerically complex parametrizations usable at a negligible runtime cost in neural networks. In particular, we apply our results to RNNs with orthogonal recurrent weights, yielding a new architecture called expRNN. We demonstrate how our method constitutes a more robust approach to optimization with orthogonal constraints, showing faster, accurate, and more stable convergence in several tasks designed to test RNNs.
Strictly enforcing orthonormality constraints on parameter matrices has been shown advantageous in deep learning. This amounts to Riemannian optimization on the Stiefel manifold, which, however, is computationally expensive. To address this challenge, we present two main contributions: (1) A new efficient retraction map based on an iterative Cayley transform for optimization updates, and (2) An implicit vector transport mechanism based on the combination of a projection of the momentum and the Cayley transform on the Stiefel manifold. We specify two new optimization algorithms: Cayley SGD with momentum, and Cayley ADAM on the Stiefel manifold. Convergence of Cayley SGD is theoretically analyzed. Our experiments for CNN training demonstrate that both algorithms: (a) Use less running time per iteration relative to existing approaches that enforce orthonormality of CNN parameters; and (b) Achieve faster convergence rates than the baseline SGD and ADAM algorithms without compromising the performance of the CNN. Cayley SGD and Cayley ADAM are also shown to reduce the training time for optimizing the unitary transition matrices in RNNs.
We present a new class of stochastic, geometrically-driven optimization algorithms on the orthogonal group $O(d)$ and naturally reductive homogeneous manifolds obtained from the action of the rotation group $SO(d)$. We theoretically and experimentally demonstrate that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, normalizing flows and metric learning. We show an intriguing connection between efficient stochastic optimization on the orthogonal group and graph theory (e.g. matching problem, partition functions over graphs, graph-coloring). We leverage the theory of Lie groups and provide theoretical results for the designed class of algorithms. We demonstrate broad applicability of our methods by showing strong performance on the seemingly unrelated tasks of learning world models to obtain stable policies for the most difficult $mathrm{Humanoid}$ agent from $mathrm{OpenAI}$ $mathrm{Gym}$ and improving convolutional neural networks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا