Do you want to publish a course? Click here

MRPC Telescope Simulation for the Extreme Energy Events Experiment

127   0   0.0 ( 0 )
 Added by Giuseppe Mandaglio
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A simulation tool based on GEMC framework to describe the MRPC telescope of the Extreme Energy Events (EEE) Project is presented. The EEE experiment is mainly devoted to the study of the secondary cosmic muons by using MRPC telescope distributed in high schools and research centres in Italy and at CERN. This takes into account the muon interactions with EEE telescopes and the structures surrounding the experimental apparata; it consists of a dedicated event generator producing realistic muon distribution and a detailed geometry description of the detector. Microscopic behaviour of MRPCs has been included to produce experimental-like data. A method to estimate the chamber effciency directly from data has been implemented and tested by comparing the experimental and simulated polar angle distribution of muons.



rate research

Read More

This paper describes the simulation framework of the Extreme Energy Events (EEE) experiment. EEE is a network of cosmic muon trackers, each made of three Multi-gap Resistive Plate Chambers (MRPC), able to precisely measure the absolute muon crossing time and the muon integrated angular flux at the ground level. The response of a single MRPC and the combination of three chambers have been implemented in a GEANT4-based framework (GEMC) to study the telescope response. The detector geometry, as well as details about the surrounding materials and the location of the telescopes have been included in the simulations in order to realistically reproduce the experimental set-up of each telescope. A model based on the latest parametrization of the cosmic muon flux has been used to generate single muon events. After validating the framework by comparing simulations to selected EEE telescope data, it has been used to determine detector parameters not accessible by analysing experimental data only, such as detection efficiency, angular and spatial resolution.
Multigap Resistive Plate Chambers (MRPC). The EEE network is composed, so far, of 53 telescopes, each made of three MRPC detectors; it is organized in clusters and single telescope stations distributed all over the Italian territory and installed in High Schools, covering an area larger than $3times10^{5}$ km$^{2}$. The study of Extensive Air Showers (EAS), that is one of the goal of the project, requires excellent performance in terms of time and spatial resolution, efficiency, tracking capability and long term stability. The data from two recent coordinated data taking periods, named Run 2 and Run 3, have been used to measure these quantities and the results are here reported, together with a comparison with expectations and with the results from a beam test performed in 2006 at CERN.
The Extreme Energy Events (EEE) experiment is the largest system in the world completely implemented with Multigap Resistive Plate Chambers (MRPCs). Presently, it consists of a network of 59 muon telescopes, each made of 3 MRPCs, devoted to the study of secondary cosmic rays. Its stations, sometimes hundreds of kilometers apart, are synchronized at a few nanoseconds level via a clock signal delivered by the Global Positioning System. The data collected during centrally coordinated runs are sent to INFN CNAF, the largest center for scientific computing in Italy, where they are reconstructed and made available for analysis. Thanks to the on-line monitoring and data transmission, EEE operates as a single coordinated system spread over an area of about $3 times 10^5$ km$^2$. In 2017, the EEE collaboration started an important upgrade program, aiming to extend the network with 20 additional stations, with the option to have more in the future. This implies the construction, testing and commissioning of 60 chambers, for a total detector surface of around 80 m$^2$. In this paper, aspects related to this challenging endeavor are covered, starting from the technological solutions chosen to build these state-of-the-art detectors, to the quality controls and the performance tests carried on.
The Extreme Energy Events (EEE) Project is mainly devoted to the study of the secondary cosmic ray radiation by using muon tracker telescopes made of three Multigap Resistive Plate Chambers (MRPC) each. The experiment consists of a telescope network mainly distributed across Italy, hosted in different building structures pertaining to high schools, universities and research centers. Therefore, the possibility to take into account the effects of these structures on collected data is important for the large physics programme of the project. A simulation tool, based on GEANT4 and using GEMC framework, has been implemented to take into account the muon interaction with EEE telescopes and to estimate the effects on data of the structures surrounding the experimental apparata.A dedicated event generator producing realistic muon distributions, detailed geometry and microscopic behavior of MRPCs have been included to produce experimental-like data. The comparison between simulated and experimental data, and the estimation of detector resolutions is here presented and discussed.
The Extreme Energy Events observatory is an extended muon telescope array, covering more than 10 degrees both in latitude and longitude. Its 59 muon telescopes are equipped with tracking detectors based on Multigap Resistive Plate Chamber technology with time resolution of the order of a few hundred picoseconds. The recent restrictions on greenhouse gases demand studies for new gas mixtures in compliance with the relative requirements. Tetrafluoropropene is one of the candidates for tetrafluoroethane substitution, since it is characterized by a Global Warming Power around 300 times lower than the gas mixtures used up to now. Several mixtures have been tested, measuring efficiency curves, charge distributions, streamer fractions and time resolutions. Results are presented for the whole set of mixtures and operating conditions, %. A set of tests on a real EEE telescope, with cosmic muons, are being performed at the CERN-01 EEE telescope. The tests are focusing on identifying a mixture with good performance at the low rates typical of an EEE telescope.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا