Do you want to publish a course? Click here

Moire Image Restoration using Multi Level Hyper Vision Net

104   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A moire pattern in the images is resulting from high frequency patterns captured by the image sensor (colour filter array) that appear after demosaicing. These Moire patterns would appear in natural images of scenes with high frequency content. The Moire pattern can also vary intensely due to a minimal change in the camera direction/positioning. Thus the Moire pattern depreciates the quality of photographs. An important issue in demoireing pattern is that the Moireing patterns have dynamic structure with varying colors and forms. These challenges makes the demoireing more difficult than many other image restoration tasks. Inspired by these challenges in demoireing, a multilevel hyper vision net is proposed to remove the Moire pattern to improve the quality of the images. As a key aspect, in this network we involved residual channel attention block that can be used to extract and adaptively fuse hierarchical features from all the layers efficiently. The proposed algorithms has been tested with the NTIRE 2020 challenge dataset and thus achieved 36.85 and 0.98 Peak to Signal Noise Ratio (PSNR) and Structural Similarity (SSIM) Index respectively.



rate research

Read More

While the depth of convolutional neural networks has attracted substantial attention in the deep learning research, the width of these networks has recently received greater interest. The width of networks, defined as the size of the receptive fields and the density of the channels, has demonstrated crucial importance in low-level vision tasks such as image denoising and restoration. However, the limited generalization ability, due to the increased width of networks, creates a bottleneck in designing wider networks. In this paper, we propose the Deep Regulated Convolutional Network (RC-Net), a deep network composed of regulated sub-network blocks cascaded by skip-connections, to overcome this bottleneck. Specifically, the Regulated Convolution block (RC-block), featured by a combination of large and small convolution filters, balances the effectiveness of prominent feature extraction and the generalization ability of the network. RC-Nets have several compelling advantages: they embrace diversified features through large-small filter combinations, alleviate the hazy boundary and blurred details in image denoising and super-resolution problems, and stabilize the learning process. Our proposed RC-Nets outperform state-of-the-art approaches with significant performance gains in various image restoration tasks while demonstrating promising generalization ability. The code is available at https://github.com/cswin/RC-Nets.
Local and non-local attention-based methods have been well studied in various image restoration tasks while leading to promising performance. However, most of the existing methods solely focus on one type of attention mechanism (local or non-local). Furthermore, by exploiting the self-similarity of natural images, existing pixel-wise non-local attention operations tend to give rise to deviations in the process of characterizing long-range dependence due to image degeneration. To overcome these problems, in this paper we propose a novel collaborative attention network (COLA-Net) for image restoration, as the first attempt to combine local and non-local attention mechanisms to restore image content in the areas with complex textures and with highly repetitive details respectively. In addition, an effective and robust patch-wise non-local attention model is developed to capture long-range feature correspondences through 3D patches. Extensive experiments on synthetic image denoising, real image denoising and compression artifact reduction tasks demonstrate that our proposed COLA-Net is able to achieve state-of-the-art performance in both peak signal-to-noise ratio and visual perception, while maintaining an attractive computational complexity. The source code is available on https://github.com/MC-E/COLA-Net.
We present a general learning-based solution for restoring images suffering from spatially-varying degradations. Prior approaches are typically degradation-specific and employ the same processing across different images and different pixels within. However, we hypothesize that such spatially rigid processing is suboptimal for simultaneously restoring the degraded pixels as well as reconstructing the clean regions of the image. To overcome this limitation, we propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts computation to difficult regions in the image. SPAIR comprises of two components, (1) a localization network that identifies degraded pixels, and (2) a restoration network that exploits knowledge from the localization network in filter and feature domain to selectively and adaptively restore degraded pixels. Our key idea is to exploit the non-uniformity of heavy degradations in spatial-domain and suitably embed this knowledge within distortion-guided modules performing sparse normalization, feature extraction and attention. Our architecture is agnostic to physical formation model and generalizes across several types of spatially-varying degradations. We demonstrate the efficacy of SPAIR individually on four restoration tasks-removal of rain-streaks, raindrops, shadows and motion blur. Extensive qualitative and quantitative comparisons with prior art on 11 benchmark datasets demonstrate that our degradation-agnostic network design offers significant performance gains over state-of-the-art degradation-specific architectures. Code available at https://github.com/human-analysis/spatially-adaptive-image-restoration.
It is suggested that low-light image enhancement realizes one-to-many mapping since we have different definitions of NORMAL-light given application scenarios or users aesthetic. However, most existing methods ignore subjectivity of the task, and simply produce one result with fixed brightness. This paper proposes a neural network for multi-level low-light image enhancement, which is user-friendly to meet various requirements by selecting different images as brightness reference. Inspired by style transfer, our method decomposes an image into two low-coupling feature components in the latent space, which allows the concatenation feasibility of the content components from low-light images and the luminance components from reference images. In such a way, the network learns to extract scene-invariant and brightness-specific information from a set of image pairs instead of learning brightness differences. Moreover, information except for the brightness is preserved to the greatest extent to alleviate color distortion. Extensive results show strong capacity and superiority of our network against existing methods.
Image restoration tasks demand a complex balance between spatial details and high-level contextualized information while recovering images. In this paper, we propose a novel synergistic design that can optimally balance these competing goals. Our main proposal is a multi-stage architecture, that progressively learns restoration functions for the degraded inputs, thereby breaking down the overall recovery process into more manageable steps. Specifically, our model first learns the contextualized features using encoder-decoder architectures and later combines them with a high-resolution branch that retains local information. At each stage, we introduce a novel per-pixel adaptive design that leverages in-situ supervised attention to reweight the local features. A key ingredient in such a multi-stage architecture is the information exchange between different stages. To this end, we propose a two-faceted approach where the information is not only exchanged sequentially from early to late stages, but lateral connections between feature processing blocks also exist to avoid any loss of information. The resulting tightly interlinked multi-stage architecture, named as MPRNet, delivers strong performance gains on ten datasets across a range of tasks including image deraining, deblurring, and denoising. The source code and pre-trained models are available at https://github.com/swz30/MPRNet.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا