No Arabic abstract
Using cosmological hydrodynamic simulations with physically motivated models of super-massive black hole (SMBH) formation and growth, we compare the assembly of Milky Way-mass ( $M_{mathrm{vir}} approx 7 times 10^{11}$ $M_{odot}$ at $z = 0$) galaxies in cold dark matter (CDM) and self-interacting dark matter (SIDM) models. Our SIDM model adopts a constant cross-section of 1 cm$^2$/g. We find that SMBH formation is suppressed in the early universe due to SIDM coring. SMBH-SMBH mergers are also suppressed in SIDM as a consequence of the lower number of SMBHs formed. Lack of initial merger-driven SMBH growth in turn delays SMBH growth by billions of years in SIDM compared to CDM. Further, we find that this delayed growth suppresses SMBH accretion in the largest progenitors of the main SIDM galaxies during the first 5 Gyrs of their evolution. Nonetheless, by $z = 0.8$ the CDM and SIDM SMBH masses differ only by around 0.2 dex, so that both remain compatible with the $M_{BH}-M_{*}$ relation. We show that the reduced accretion causes the SIDM SMBHs to less aggressively regulate star formation in their host galaxies than their CDM counterparts, resulting in a factor of 3 or more stars being produced over the lifetime of the SIDM galaxies compared to the CDM galaxies. Our results highlight a new way in which SIDM can affect the growth and merger history of SMBHs and ultimately give rise to very different galaxy evolution compared to the classic CDM model.
We explore for the first time the effect of self-interacting dark matter (SIDM) on the dark matter (DM) and baryonic distribution in massive galaxies formed in hydrodynamical cosmological simulations, including explicit baryonic physics treatment. A novel implementation of Super-Massive Black Hole (SMBH) formation and evolution is used, as in Tremmel et al.(2015, 2016), allowing to explicitly follow SMBH dynamics at the center of galaxies. A high SIDM constant cross-section is chosen, $sigma$=10 $rm cm^2/gr$, to amplify differences from CDM models. Milky Way-like galaxies form a shallower DM density profile in SIDM than they do in CDM, with differences already at 20 kpc scales. This demonstrates that even for the most massive spirals the effect of SIDM dominates over the adiabatic contraction due to baryons. Strikingly, the dynamics of SMBHs differs in the SIDM and reference CDM case. SMBHs in massive spirals have sunk to the centre of their host galaxy in both the SIDM and CDM run, while in less massive galaxies about 80$%$ of the SMBH population is off-centered in the SIDM case, as opposed to the CDM case in which $sim$90$%$ of SMBHs have reached their hosts centre. SMBHs are found as far as $sim$9 kpc away from the centre of their host SIDM galaxy. This difference is due to the increased dynamical friction timescale caused by the lower DM density in SIDM galaxies compared to CDM, resulting in core stalling. This pilot work highlights the importance of simulating in a full hydrodynamical context different DM models combined to SMBH physics to study their influence on galaxy formation.
We discuss the central role played by X-ray studies to reconstruct the past history of formation and evolution of supermassive Black Holes (BHs), and the role they played in shaping the properties of their host galaxies. We shortly review the progress in this field contributed by the current X-ray and multiwavelength surveys. Then, we focus on the outstanding scientific questions that have been opened by observations carried out in the last years and that represent the legacy of Chandra and XMM, as for X-ray observations, and the legacy of the SDSS, as for wide area surveys: 1) When and how did the first supermassive black holes form? 2) How does cosmic environment regulate nuclear activity (and star formation) across cosmic time? 3) What is the history of nuclear activity in a galaxy lifetime? We show that the most efficient observational strategy to address these questions is to carry out a large-area X-ray survey, reaching a sensitivity comparable to that of deep Chandra and XMM pointings, but extending over several thousands of square degrees. Such a survey can only be carried out with a Wide-Field X-ray Telescope (WFXT) with a high survey speed, due to the combination of large field of view and large effective area, i.e., grasp, and sharp PSF. We emphasize the important synergies that WFXT will have with a number of future groundbased and space telescopes, covering from the radio to the X-ray bands and discuss the immense legacy value that such a mission will have for extragalactic astronomy at large.
Recently, Meneghetti et al. reported an excess of small-scale gravitational lenses in galaxy clusters, compared to simulations of standard cold dark matter (CDM). We propose a self-interacting dark matter (SIDM) scenario, where a population of subhalos in the clusters experiences gravothermal collapse. Using controlled N-body simulations, we show the presence of early-type galaxies in substructures accelerates gravothermal evolution and a collapsed SIDM subhalo has a steeper density profile than its CDM counterpart, leading to a larger radial galaxy-galaxy strong lensing cross section and more lens images, in better agreement with the observations. Our results indicate that strong gravitational lensing can provide a promising test of the self-interacting nature of dark matter.
There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto a MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full 3D adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2e11 Msun galactic halo and its 1e5 Msun embedded MBH at redshift 3 in a cosmological LCDM simulation. The MBH feedback heats the surrounding ISM up to 1e6 K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant, and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.
We present the discovery and first three months of follow-up observations of a currently on-going unusual transient detected by the OGLE-IV survey, located in the centre of a galaxy at redshift z=0.1655. The long rise to absolute magnitude of -20.5 mag, slow decline, very broad He and H spectral features make OGLE16aaa similar to other optical/UV Tidal Disruption Events (TDEs). Weak narrow emission lines in the spectrum and archival photometric observations suggest the host galaxy is a weak-line Active Galactic Nucleus (AGN), which has been accreting at higher rate in the past. OGLE16aaa, along with SDSS J0748, seems to form a sub-class of TDEs by weakly or recently active super-massive black holes (SMBHs). This class might bridge the TDEs by quiescent SMBHs and flares observed as changing-look QSOs, if we interpret the latter as TDEs. If this picture is true, the previously applied requirement for identifying a flare as a TDE that it had to come from an inactive nucleus, could be leading to observational bias in TDE selection, thus affecting TDE-rate estimations.