Quantifying uncertainties in neutron-alpha scattering with chiral nucleon-nucleon and three-nucleon forces


Abstract in English

Background: Modern ab initio theory combined with high-quality nucleon-nucleon (NN) and three-nucleon (3N) interactions from chiral effective field theory (EFT) can provide a predictive description of low-energy light-nuclei reactions relevant for astrophysics and fusion-energy applications. However, the high cost of computations has so far impeded a complete analysis of the uncertainty budget of such calculations. Purpose: Starting from NN potentials up to fifth order (N4LO) combined with leading-order 3N forces, we study how the order-by-order convergence of the chiral expansion and confidence intervals for the 3N contact and contact-plus-one-pion-exchange low-energy constants (cE and cD) contribute to the overall uncertainty budget of many-body calculations of neutron-He elastic scattering. Methods: We compute structure and reaction observables for three-, four- and five-nucleon systems within the ab initio frameworks of the no-core shell model an no-core shell model with continuum. Using a small set of design runs, we construct a Gaussian process model (GPM) that acts as a statistical emulator for the theory. With this, we gain insight into how uncertainties in the 3N low-energy constants propagate throughout the calculation and determine the Bayesian posterior distribution of these parameters with Markov-Chain Monte-Carlo.

Download