Do you want to publish a course? Click here

Astraeus I: The interplay between galaxy formation and reionization

70   0   0.0 ( 0 )
 Added by Anne Hutter
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a new self-consistent model of galaxy evolution and reionization, ASTRAEUS (semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dArk mattEr simUlationS), which couples a state-of-the-art N-body simulation with the semi-analytical galaxy evolution DELPHI and the semi-numerical reionization scheme CIFOG. ASTRAEUS includes all the key processes of galaxy formation and evolution (including accretion, mergers, supernova and radiative feedback) and follows the time and spatial evolution of the ionized regions in the intergalactic medium (IGM). Importantly, it explores different radiative feedback models that cover the physically plausible parameter space, ranging from a weak and delayed to a strong and immediate reduction of gas mass available for star formation. From our simulation suite that covers the different radiative feedback prescriptions and ionization topologies, we find that radiative feedback continuously reduces star formation in galaxies with $M_h<10^{9.5}M_{odot}$ upon local reionization; larger mass halos are unaffected even for the strongest and immediate radiative feedback cases during reionization. For this reason, the ionization topologies of different radiative feedback scenarios differ only on scales smaller than $1-2$Mpc, and significant deviations are only found when physical parameters (e.g. the escape fraction of ionizing photons) are altered based on galactic properties. Finally, we find observables (the ultra-violet luminosity function, stellar mass function, reionization histories and ionization topologies) are hardly affected by the choice of the used stellar population synthesis models that either model single stars or binaries.



rate research

Read More

In this work, we use the {sc astraeus} (seminumerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in N-body dArk mattEr simUlationS) framework which couples galaxy formation and reionization in the first billion years. Exploring a number of models for reionization feedback and the escape fraction of ionizing radiation from the galactic environment ($f_mathrm{esc}$), we quantify how the contribution of star-forming galaxies {(with halo masses $M_h>10^{8.2}$M$_odot$)} to reionization depends on the radiative feedback model, $f_mathrm{esc}$, and the environmental over-density. Our key findings are: (i) for constant $f_mathrm{esc}$ models, intermediate-mass galaxies (with halo masses of $M_hsimeq10^{9-11}$M$_odot$ and absolute UV magnitudes of $M_{UV} sim -15$ to $-20$) in intermediate-density regions drive reionization; (ii) scenarios where $f_mathrm{esc}$ increases with decreasing halo mass shift the galaxy population driving reionization to lower-mass galaxies ($M_hlesssim10^{9.5}$M$_odot$) with lower luminosities ($M_{UV} gtrsim-16$) and over-densities; (iii) reionization imprints its topology on the ionizing emissivity of low-mass galaxies ($M_hlesssim10^{9}$M$_odot$) through radiative feedback. Low-mass galaxies experience a stronger suppression of star formation by radiative feedback and show lower ionizing emissivities in over-dense regions; (iv) a change in $f_mathrm{esc}$ with galaxy properties has the largest impact on the sources of reionization and their detectability, with the radiative feedback strength and environmental over-density playing a sub-dominant role; (v) JWST-surveys (with a limiting magnitude of $M_{UV} = -16$) will be able to detect the galaxies providing $sim 60-70%$ ($sim 10%$) of reionization photons at $z=7$ for constant $f_mathrm{esc}$ models (scenarios where $f_mathrm{esc}$ increases with decreasing halo mass).
128 - Huanqing Chen 2019
Recent observations have found that many $zsim 6$ quasar fields lack galaxies. This unexpected lack of galaxies may potentially be explained by quasar radiation feedback. In this paper I present a suite of 3D radiative transfer cosmological simulations of quasar fields. I find that quasar radiation suppresses star formation in low mass galaxies, mainly by photo-dissociating their molecular hydrogen. Photo-heating also plays a role, but only after $sim$100 Myr. However, galaxies which already have stellar mass above $10^5 M_odot$ when the quasar turns on will not be suppressed significantly. Quasar radiative feedback suppresses the faint end of the galaxy luminosity function (LF) within $1$ pMpc, but to a far lesser degree than the field-to-field variation of the LF. My study also suggests that by using the number of bright galaxies ($M_{1500}<-16$) around quasars, we can potentially recover the underlying mass overdensity, which allows us to put reliable constraints on quasar environments.
We explore the connection between the stellar component of galaxies and their host halos during the epoch of reionization ($5 leq zleq10$) using the CROC (Cosmic Reionization on Computers) simulations. We compare simulated galaxies with observations and find that CROC underpredicts the abundance of luminous galaxies when compared to observed UV luminosity functions, and analogously the most massive galaxies when compared to observed stellar mass functions. We can trace the deficit of star formation to high redshifts, where the slope of the star formation rate to stellar mass relation is consistent with observations, but the normalization is systematically low. This results in a star formation rate density and stellar mass density that is systematically offset from observations. However, the less luminous or lower stellar mass objects have luminosities and stellar masses that agree fairly well with observational data. We explore the stellar-to-halo mass ratio, a key quantity that is difficult to measure at high redshifts and that models do not consistently predict. In CROC, the stellar-to-halo mass ratio {it decreases} with redshift, a trend opposite to some abundance matching studies. These discrepancies uncover where future effort should be focused in order to improve the fidelity of modeling cosmic reionization. We also compare the CROC galaxy bias with observational measurements using Lyman-Break Galaxy (LBG) samples. The good agreement of simulation and data shows that the clustering of dark matter halos is properly captured in CROC.
By linking galaxies in Sloan Digital Sky Survey (SDSS) to subhaloes in the ELUCID simulation, we investigate the relation between subhalo formation time and the galaxy properties, and the dependence of galaxy properties on the cosmic web environment. We find that central and satellite subhaloes have different formation time, where satellite subhaloes are older than central subhaloes at fixed mass. At fixed mass, the galaxy stellar-to-subhalo mass ratio is a good proxy of the subhalo formation time, and increases with the subhalo formation redshifts, especially for massive galaxies. The subhalo formation time is dependent on the cosmic web environment. For central subhaloes, there is a characteristic subhalo mass of $sim 10^{12} msun$, below which subhaloes in knots are older than subhaloes of the same mass in filaments, sheets, or voids, while above which it reverses. The cosmic web environmental dependence of stellar-to-subhalo mass ratio is similar to that of the subhalo formation time. For centrals, there is a characteristic subhalo mass of $sim 10^{12} msun$, below which the stellar-to-subhalo mass ratio is higher in knots than in filaments, sheets and voids, above which it reverses. Galaxies in knots have redder colors below $10^{12} msun$, while above $10^{12} msun$, the environmental dependence vanishes. Satellite fraction is strongly dependent on the cosmic web environment, and decreases from knots to filaments to sheets to voids, especially for low-mass galaxies.
We combine recent simulation work on the SFR--[C II] correlation at high redshift with empirical modeling of the galaxy--halo connection (via UniverseMachine) to forecast [C II] auto power spectra from $zsim4$ to $zsim8$. We compare these to sensitivities realistically expected from various instruments expected to come on-line in the next decade. If the predictions of our model are correct, [C II] should be detectable up to $zsim6$ in this generation of surveys, but detecting [C II] past the end of reionization will require a generational leap in line-intensity survey capabilities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا