No Arabic abstract
Phantom dark energy can produce amplified cosmic acceleration at late times, thus increasing the value of $H_0$ favored by CMB data and releasing the tension with local measurements of $H_0$. We show that the best fit value of $H_0$ in the context of the CMB power spectrum is degenerate with a constant equation of state parameter $w$, in accordance with the approximate effective linear equation $H_0 + 30.93; w - 36.47 = 0$ ($H_0$ in $km ; sec^{-1} ; Mpc^{-1}$). This equation is derived by assuming that both $Omega_{0 rm m}h^2$ and $d_A=int_0^{z_{rec}}frac{dz}{H(z)}$ remain constant (for invariant CMB spectrum) and equal to their best fit Planck/$Lambda$CDM values as $H_0$, $Omega_{0 rm m}$ and $w$ vary. For $w=-1$, this linear degeneracy equation leads to the best fit $H_0=67.4 ; km ; sec^{-1} ; Mpc^{-1}$ as expected. For $w=-1.22$ the corresponding predicted CMB best fit Hubble constant is $H_0=74 ; km ; sec^{-1} ; Mpc^{-1}$ which is identical with the value obtained by local distance ladder measurements while the best fit matter density parameter is predicted to decrease since $Omega_{0 rm m}h^2$ is fixed. We verify the above $H_0-w$ degeneracy equation by fitting a $w$CDM model with fixed values of $w$ to the Planck TT spectrum showing also that the quality of fit ($chi^2$) is similar to that of $Lambda$CDM. However, when including SnIa, BAO or growth data the quality of fit becomes worse than $Lambda$CDM when $w< -1$. Finally, we generalize the $H_0-w(z)$ degeneracy equation for $w(z)=w_0+w_1; z/(1+z)$ and identify analytically the full $w_0-w_1$ parameter region that leads to a best fit $H_0=74; km ; sec^{-1} ; Mpc^{-1}$ in the context of the Planck CMB spectrum. This exploitation of $H_0-w(z)$ degeneracy can lead to immediate identification of all parameter values of a given $w(z)$ parametrization that can potentially resolve the $H_0$ tension.
We investigate the possibility of phantom crossing in the dark energy sector and solution for the Hubble tension between early and late universe observations. We use robust combinations of different cosmological observations, namely the CMB, local measurement of Hubble constant ($H_0$), BAO and SnIa for this purpose. For a combination of CMB+BAO data which is related to early Universe physics, phantom crossing in the dark energy sector is confirmed at $95$% confidence level and we obtain the constraint $H_0=71.0^{+2.9}_{-3.8}$ km/s/Mpc at 68% confidence level which is in perfect agreement with the local measurement by Riess et al. We show that constraints from different combination of data are consistent with each other and all of them are consistent with phantom crossing in the dark energy sector. For the combination of all data considered, we obtain the constraint $H_0=70.25pm 0.78$ km/s/Mpc at 68% confidence level and the phantom crossing happening at the scale factor $a_m=0.851^{+0.048}_{-0.031}$ at 68% confidence level.
Up-to-date cosmological data analyses have shown that textit{(a)} a closed universe is preferred by the Planck data at more than $99%$ CL, and textit{(b)} interacting scenarios offer a very compelling solution to the Hubble constant tension. In light of these two recent appealing scenarios, we consider here an interacting dark matter-dark energy model with a non-zero spatial curvature component and a freely varying dark energy equation of state in both the quintessential and phantom regimes. When considering Cosmic Microwave Background data only, a phantom and closed universe can perfectly alleviate the Hubble tension, without the necessity of a coupling among the dark sectors. Accounting for other possible cosmological observations compromises the viability of this very attractive scenario as a global solution to current cosmological tensions, either by spoiling its effectiveness concerning the $H_0$ problem, as in the case of Supernovae Ia data, or by introducing a strong disagreement in the preferred value of the spatial curvature, as in the case of Baryon Acoustic Oscillations.
In this article we compare a variety of well known dynamical dark energy models using the cosmic microwave background measurements from the 2018 Planck legacy and 2015 Planck data releases, the baryon acoustic oscillations measurements and the local measurements of $H_0$ obtained by the SH0ES (Supernovae, $H_0$, for the Equation of State of Dark energy) collaboration analysing the Hubble Space Telescope data. We discuss the alleviation of $H_0$ tension, that is obtained at the price of a phantom-like dark energy equation of state. We perform a Bayesian evidence analysis to quantify the improvement of the fit, finding that all the dark energy models considered in this work are preferred against the $Lambda$CDM scenario. Finally, among all the possibilities analyzed, the CPL model is the best one in fitting the data and solving the $H_0$ tension at the same time. However, unfortunately, this dynamical dark energy solution is not supported by the baryon acoustic oscillations (BAO) data, and the tension is restored when BAO data are included for all the models.
Although cosmic microwave background (CMB) is the most powerful cosmological probe of neutrino masses, it is in trouble with local direct measurements of $H_0$, which is called the $H_0$ tension. Since neutrino masses are correlated with $H_0$ in CMB, one can expect the cosmological bound on neutrino masses would be much affected by the $H_0$ tension. We investigate what impact this tension brings to cosmological bound on neutrino masses by assuming a model with modified recombination which has been shown to resolve the tension. We argue that constraints on neutrino masses become significantly weaker in models where the $H_0$ tension can be resolved.
We investigate the recently introduced metastable dark energy (DE) models after the final Planck 2018 legacy release. The essence of the present work is to analyze their evolution at the level of perturbations. Our analyses show that both the metastable dark energy models considered in this article, are excellent candidates to alleviate the $H_0$ tension. In particular, for the present models, Planck 2018 alone can alleviate the $H_0$ tension within 68% CL. Along with the final cosmic microwave background data from the Planck 2018 legacy release, we also include external cosmological datasets in order to asses the robustness of our findings.