Do you want to publish a course? Click here

SpEx: Multi-Scale Time Domain Speaker Extraction Network

82   0   0.0 ( 0 )
 Added by Chenglin Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Speaker extraction aims to mimic humans selective auditory attention by extracting a target speakers voice from a multi-talker environment. It is common to perform the extraction in frequency-domain, and reconstruct the time-domain signal from the extracted magnitude and estimated phase spectra. However, such an approach is adversely affected by the inherent difficulty of phase estimation. Inspired by Conv-TasNet, we propose a time-domain speaker extraction network (SpEx) that converts the mixture speech into multi-scale embedding coefficients instead of decomposing the speech signal into magnitude and phase spectra. In this way, we avoid phase estimation. The SpEx network consists of four network components, namely speaker encoder, speech encoder, speaker extractor, and speech decoder. Specifically, the speech encoder converts the mixture speech into multi-scale embedding coefficients, the speaker encoder learns to represent the target speaker with a speaker embedding. The speaker extractor takes the multi-scale embedding coefficients and target speaker embedding as input and estimates a receptive mask. Finally, the speech decoder reconstructs the target speakers speech from the masked embedding coefficients. We also propose a multi-task learning framework and a multi-scale embedding implementation. Experimental results show that the proposed SpEx achieves 37.3%, 37.7% and 15.0% relative improvements over the best baseline in terms of signal-to-distortion ratio (SDR), scale-invariant SDR (SI-SDR), and perceptual evaluation of speech quality (PESQ) under an open evaluation condition.



rate research

Read More

Speaker extraction aims to extract the target speech signal from a multi-talker environment given a target speakers reference speech. We recently proposed a time-domain solution, SpEx, that avoids the phase estimation in frequency-domain approaches. Unfortunately, SpEx is not fully a time-domain solution since it performs time-domain speech encoding for speaker extraction, while taking frequency-domain speaker embedding as the reference. The size of the analysis window for time-domain and the size for frequency-domain input are also different. Such mismatch has an adverse effect on the system performance. To eliminate such mismatch, we propose a complete time-domain speaker extraction solution, that is called SpEx+. Specifically, we tie the weights of two identical speech encoder networks, one for the encoder-extractor-decoder pipeline, another as part of the speaker encoder. Experiments show that the SpEx+ achieves 0.8dB and 2.1dB SDR improvement over the state-of-the-art SpEx baseline, under different and same gender conditions on WSJ0-2mix-extr database respectively.
Speaker extraction is to extract a target speakers voice from multi-talker speech. It simulates humans cocktail party effect or the selective listening ability. The prior work mostly performs speaker extraction in frequency domain, then reconstructs the signal with some phase approximation. The inaccuracy of phase estimation is inherent to the frequency domain processing, that affects the quality of signal reconstruction. In this paper, we propose a time-domain speaker extraction network (TseNet) that doesnt decompose the speech signal into magnitude and phase spectrums, therefore, doesnt require phase estimation. The TseNet consists of a stack of dilated depthwise separable convolutional networks, that capture the long-range dependency of the speech signal with a manageable number of parameters. It is also conditioned on a reference voice from the target speaker, that is characterized by speaker i-vector, to perform the selective listening to the target speaker. Experiments show that the proposed TseNet achieves 16.3% and 7.0% relative improvements over the baseline in terms of signal-to-distortion ratio (SDR) and perceptual evaluation of speech quality (PESQ) under open evaluation condition.
Target speech extraction, which extracts a single target source in a mixture given clues about the target speaker, has attracted increasing attention. We have recently proposed SpeakerBeam, which exploits an adaptation utterance of the target speaker to extract his/her voice characteristics that are then used to guide a neural network towards extracting speech of that speaker. SpeakerBeam presents a practical alternative to speech separation as it enables tracking speech of a target speaker across utterances, and achieves promising speech extraction performance. However, it sometimes fails when speakers have similar voice characteristics, such as in same-gender mixtures, because it is difficult to discriminate the target speaker from the interfering speakers. In this paper, we investigate strategies for improving the speaker discrimination capability of SpeakerBeam. First, we propose a time-domain implementation of SpeakerBeam similar to that proposed for a time-domain audio separation network (TasNet), which has achieved state-of-the-art performance for speech separation. Besides, we investigate (1) the use of spatial features to better discriminate speakers when microphone array recordings are available, (2) adding an auxiliary speaker identification loss for helping to learn more discriminative voice characteristics. We show experimentally that these strategies greatly improve speech extraction performance, especially for same-gender mixtures, and outperform TasNet in terms of target speech extraction.
Speaker extraction algorithm relies on the speech sample from the target speaker as the reference point to focus its attention. Such a reference speech is typically pre-recorded. On the other hand, the temporal synchronization between speech and lip movement also serves as an informative cue. Motivated by this idea, we study a novel technique to use speech-lip visual cues to extract reference target speech directly from mixture speech during inference time, without the need of pre-recorded reference speech. We propose a multi-modal speaker extraction network, named MuSE, that is conditioned only on a lip image sequence. MuSE not only outperforms other competitive baselines in terms of SI-SDR and PESQ, but also shows consistent improvement in cross-dataset evaluations.
202 - Yan Deng , Lei He , Frank Soong 2018
Neural TTS has shown it can generate high quality synthesized speech. In this paper, we investigate the multi-speaker latent space to improve neural TTS for adapting the system to new speakers with only several minutes of speech or enhancing a premium voice by utilizing the data from other speakers for richer contextual coverage and better generalization. A multi-speaker neural TTS model is built with the embedded speaker information in both spectral and speaker latent space. The experimental results show that, with less than 5 minutes of training data from a new speaker, the new model can achieve an MOS score of 4.16 in naturalness and 4.64 in speaker similarity close to human recordings (4.74). For a well-trained premium voice, we can achieve an MOS score of 4.5 for out-of-domain texts, which is comparable to an MOS of 4.58 for professional recordings, and significantly outperforms single speaker result of 4.28.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا