Quarkyonic Matter Equation of State in Beta-Equilibrium


Abstract in English

Quark matter may appear due to a hadronic-quark transition in the core of a hybrid star. Quarkyonic matter is an approach in which both quarks and nucleons appear as quasi-particles in a crossover transition, and provides an explicit realization of early ideas concerning quark matter (e.g., the MIT bag model). This description has recently been employed by McLerran and Reddy to model chargeless (pure neutron) matter with an approach that has the virtue that the speed of sound rises quickly at a neutron-quark transition so as to satisfy observational constraints on the neutron star maximum mass ($gtrsim2M_odot$) and the radius of a $1.4M_odot$ star ($R_{1.4}lesssim 13.5$ km). Traditional models involving first-order transitions result in softer pressure-energy density relations that have difficulty satisfying these constraints except with very narrow choices of parameters. We propose a variation of quarkyonic matter involving protons and leptons whose energy can be explicitly minimized to achieve both chemical and beta equilibrium, which cannot be done in the chargeless formulation. Quarkyonic stellar models are able to satisfy observed mass and radius constraints with a wide range of model parameters, avoiding the obligatory fine-tuning of conventional hybrid star models, including requiring the transition density to be very close to the nuclear saturation density. Our formulation fits experimental and theoretical properties of the nuclear symmetry energy and pure neutron matter, and contains as few as three free parameters. This makes it an ideal tool for the study of high-density matter that is an efficient alternative to piecewise polytrope or spectral decomposition methods.

Download