We discuss boson stars and neutron stars, respectively, in a scalar-tensor gravity model with an explicitly time-dependent real scalar field. While the boson stars in our model -- in contrast to the neutron stars -- do not possess a hard core, we find that the qualitative effects of the formation of scalar hair are similar in both cases : the presence of the gravity scalar allows both type of stars to exist for larger central density as well as larger mass at given radius than their General Relativity counterparts. In particular, we find new types of neutron stars with scalar hair which have radii very close to the corresponding Schwarzschild radius and hence are comparable in density to black holes. This new branch of solutions is stable with respect to the decay into individual baryons.