Do you want to publish a course? Click here

Using all-sky optical observations for automated orbit determination and prediction for satellites in Low Earth Orbit

99   0   0.0 ( 0 )
 Added by Thomas Wijnen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have used an existing, robotic, multi-lens, all-sky camera system, coupled to a dedicated data reduction pipeline, to automatically determine orbital parameters of satellites in Low Earth Orbit (LEO). Each of the fixed cameras has a Field of View of 53 x 74 degrees, while the five cameras combined cover the entire sky down to 20 degrees from the horizon. Each of the cameras takes an image every 6.4 seconds, after which the images are automatically processed and stored. We have developed an automated data reduction pipeline that recognizes satellite tracks, to pixel level accuracy ($sim$ 0.02 degrees), and uses their endpoints to determine the orbital elements in the form of standardized Two Line Elements (TLEs). The routines, that use existing algorithms such as the Hough transform and the Ransac method, can be used on any optical dataset. For a satellite with an unknown TLE, we need at least two overflights to accurately predict the next one. Known TLEs can be refined with every pass to improve collision detections or orbital decay predictions, for example. For our current data analysis we have been focusing on satellites in LEO, where we are able to recover between 50% and 80% of the known overpasses during twilight. We have been able to detect LEO satellites down to 7th visual magnitude. Higher objects, up to geosynchronous orbit, were visually observed, but are currently not being automatically picked up by our reduction pipeline. We expect that with further improvements to our data reduction, and potentially with longer integration times and/or different optics, the instrumental set-up can be used for tracking a significant fraction of satellites up to geosynchronous orbit.



rate research

Read More

112 - P. Cumani , M. Hernanz , J. Kiener 2019
The different background components in a low-Earth orbit have been modeled in the 10 keV to 100 GeV energy range. The model is based on data from previous instruments and it considers both primary and secondary particles, charged particles, neutrons and photons. The necessary corrections to consider the geomagnetic cutoff are applied to calculate the flux at different inclinations and altitudes for a mean solar activity. Activation simulations from such a background have been carried out using the model of a possible future gamma-ray mission (e-ASTROGAM). The event rates and spectra from these simulations were then compared to those from the isotopes created by the particles present in the South Atlantic Anomaly (SAA). The primary protons are found to be the main contributor of the activation, while the contributions of the neutrons, and that of the secondary protons can be considered negligible. The long-term activation from the passage through the SAA becomes the main source of background at high inclination (i$gtrsim10^circ$). The used models have been collected in a Python class openly available on github.
A crucial part of a space mission for very-long baseline interferometery (VLBI), which is the technique capable of providing the highest resolution images in astronomy, is orbit determination of the missions space radio telescope(s). In order to successfully detect interference fringes that result from correlation of the signals recorded by a ground-based and a space-borne radio telescope, the propagation delays experienced in the near-Earth space by radio waves emitted by the source and the relativity effects on each telescopes clock need to be evaluated, which requires accurate knowledge of position and velocity of the space radio telescope. In this paper we describe our approach to orbit determination (OD) of the RadioAstron spacecraft of the RadioAstron space-VLBI mission. Determining RadioAstrons orbit is complicated due to several factors: strong solar radiation pressure, a highly eccentric orbit, and frequent orbit perturbations caused by the attitude control system. We show that in order to maintain the OD accuracy required for processing space-VLBI observations at cm-wavelengths it is required to take into account the additional data on thruster firings, reaction wheel rotation rates, and attitude of the spacecraft. We also investigate into using the unique orbit data available only for a space-VLBI spacecraft, i.e. the residual delays and delay rates that result from VLBI data processing, as a means to evaluate the achieved OD accuracy. We present the results of the first experience of OD accuracy evaluation of this kind, using more than 5,000 residual values obtained as a result of space-VLBI observations performed over 7 years of the RadioAstron mission operations.
76 - J. Ripa , G. Dilillo , R. Campana 2021
Space radiation is well-known to pose serious issues to solid-state high-energy sensors. Therefore, radiation models play a key role in the preventive assessment of the radiation damage, duty cycles, performance and lifetimes of detectors. In the context of HERMES-SP mission we present our investigation of AE8/AP8 and AE9/AP9 specifications of near-Earth trapped radiation environment. We consider different circular Low-Earth orbits. Trapped particles fluxes are obtained, from which maps of the radiation regions are computed, estimating duty cycles at different flux thresholds. Outcomes are also compared with published results on in-situ measurements.
Very low Earth orbits (VLEO), typically classified as orbits below approximately 450 km in altitude, have the potential to provide significant benefits to spacecraft over those that operate in higher altitude orbits. This paper provides a comprehensive review and analysis of these benefits to spacecraft operations in VLEO, with parametric investigation of those which apply specifically to Earth observation missions. The most significant benefit for optical imaging systems is that a reduction in orbital altitude improves spatial resolution for a similar payload specification. Alternatively mass and volume savings can be made whilst maintaining a given performance. Similarly, for radar and lidar systems, the signal-to-noise ratio can be improved. Additional benefits include improved geospatial position accuracy, improvements in communications link-budgets, and greater launch vehicle insertion capability. The collision risk with orbital debris and radiation environment can be shown to be improved in lower altitude orbits, whilst compliance with IADC guidelines for spacecraft post-mission lifetime and deorbit is also assisted. Finally, VLEO offers opportunities to exploit novel atmosphere-breathing electric propulsion systems and aerodynamic attitude and orbit control methods. However, key challenges associated with our understanding of the lower thermosphere, aerodynamic drag, the requirement to provide a meaningful orbital lifetime whilst minimising spacecraft mass and complexity, and atomic oxygen erosion still require further research. Given the scope for significant commercial, societal, and environmental impact which can be realised with higher performing Earth observation platforms, renewed research efforts to address the challenges associated with VLEO operations are required.
221 - J. A. Lipa , S. Buchman , S. Saraf 2012
We discuss the potential for a small space mission to perform an advanced Kennedy-Thorndike test of Special Relativity using the large and rapid velocity modulation available in low Earth orbit. An improvement factor of ~100 over present ground results is expected, with an additional factor of 10 possible using more advanced technology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا