Do you want to publish a course? Click here

Unsupervised Learning of Landmarks based on Inter-Intra Subject Consistencies

220   0   0.0 ( 0 )
 Added by Weijian Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a novel unsupervised learning approach to image landmark discovery by incorporating the inter-subject landmark consistencies on facial images. This is achieved via an inter-subject mapping module that transforms original subject landmarks based on an auxiliary subject-related structure. To recover from the transformed images back to the original subject, the landmark detector is forced to learn spatial locations that contain the consistent semantic meanings both for the paired intra-subject images and between the paired inter-subject images. Our proposed method is extensively evaluated on two public facial image datasets (MAFL, AFLW) with various settings. Experimental results indicate that our method can extract the consistent landmarks for both datasets and achieve better performances compared to the previous state-of-the-art methods quantitatively and qualitatively.



rate research

Read More

Most of unsupervised person Re-Identification (Re-ID) works produce pseudo-labels by measuring the feature similarity without considering the distribution discrepancy among cameras, leading to degraded accuracy in label computation across cameras. This paper targets to address this challenge by studying a novel intra-inter camera similarity for pseudo-label generation. We decompose the sample similarity computation into two stage, i.e., the intra-camera and inter-camera computations, respectively. The intra-camera computation directly leverages the CNN features for similarity computation within each camera. Pseudo-labels generated on different cameras train the re-id model in a multi-branch network. The second stage considers the classification scores of each sample on different cameras as a new feature vector. This new feature effectively alleviates the distribution discrepancy among cameras and generates more reliable pseudo-labels. We hence train our re-id model in two stages with intra-camera and inter-camera pseudo-labels, respectively. This simple intra-inter camera similarity produces surprisingly good performance on multiple datasets, e.g., achieves rank-1 accuracy of 89.5% on the Market1501 dataset, outperforming the recent unsupervised works by 9+%, and is comparable with the latest transfer learning works that leverage extra annotations.
We propose a method for learning landmark detectors for visual objects (such as the eyes and the nose in a face) without any manual supervision. We cast this as the problem of generating images that combine the appearance of the object as seen in a first example image with the geometry of the object as seen in a second example image, where the two examples differ by a viewpoint change and/or an object deformation. In order to factorize appearance and geometry, we introduce a tight bottleneck in the geometry-extraction process that selects and distils geometry-related features. Compared to standard image generation problems, which often use generative adversarial networks, our generation task is conditioned on both appearance and geometry and thus is significantly less ambiguous, to the point that adopting a simple perceptual loss formulation is sufficient. We demonstrate that our approach can learn object landmarks from synthetic image deformations or videos, all without manual supervision, while outperforming state-of-the-art unsupervised landmark detectors. We further show that our method is applicable to a large variety of datasets - faces, people, 3D objects, and digits - without any modifications.
Deep neural networks can model images with rich latent representations, but they cannot naturally conceptualize structures of object categories in a human-perceptible way. This paper addresses the problem of learning object structures in an image modeling process without supervision. We propose an autoencoding formulation to discover landmarks as explicit structural representations. The encoding module outputs landmark coordinates, whose validity is ensured by constraints that reflect the necessary properties for landmarks. The decoding module takes the landmarks as a part of the learnable input representations in an end-to-end differentiable framework. Our discovered landmarks are semantically meaningful and more predictive of manually annotated landmarks than those discovered by previous methods. The coordinates of our landmarks are also complementary features to pretrained deep-neural-network representations in recognizing visual attributes. In addition, the proposed method naturally creates an unsupervised, perceptible interface to manipulate object shapes and decode images with controllable structures. The project webpage is at http://ytzhang.net/projects/lmdis-rep
Prediction and interpolation for long-range video data involves the complex task of modeling motion trajectories for each visible object, occlusions and dis-occlusions, as well as appearance changes due to viewpoint and lighting. Optical flow based techniques generalize but are suitable only for short temporal ranges. Many methods opt to project the video frames to a low dimensional latent space, achieving long-range predictions. However, these latent representations are often non-interpretable, and therefore difficult to manipulate. This work poses video prediction and interpolation as unsupervised latent structure inference followed by a temporal prediction in this latent space. The latent representations capture foreground semantics without explicit supervision such as keypoints or poses. Further, as each landmark can be mapped to a coordinate indicating where a semantic part is positioned, we can reliably interpolate within the coordinate domain to achieve predictable motion interpolation. Given an image decoder capable of mapping these landmarks back to the image domain, we are able to achieve high-quality long-range video interpolation and extrapolation by operating on the landmark representation space.
The softmax loss and its variants are widely used as objectives for embedding learning, especially in applications like face recognition. However, the intra- and inter-class objectives in the softmax loss are entangled, therefore a well-optimized inter-class objective leads to relaxation on the intra-class objective, and vice versa. In this paper, we propose to dissect the softmax loss into independent intra- and inter-class objective (D-Softmax). With D-Softmax as objective, we can have a clear understanding of both the intra- and inter-class objective, therefore it is straightforward to tune each part to the best state. Furthermore, we find the computation of the inter-class objective is redundant and propose two sampling-based variants of D-Softmax to reduce the computation cost. Training with regular-scale data, experiments in face verification show D-Softmax is favorably comparable to existing losses such as SphereFace and ArcFace. Training with massive-scale data, experiments show the fast variants of D-Softmax significantly accelerates the training process (such as 64x) with only a minor sacrifice in performance, outperforming existing acceleration methods of softmax in terms of both performance and efficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا