Do you want to publish a course? Click here

Speaker Recognition in Bengali Language from Nonlinear Features

77   0   0.0 ( 0 )
 Added by Sayan Nag
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

At present Automatic Speaker Recognition system is a very important issue due to its diverse applications. Hence, it becomes absolutely necessary to obtain models that take into consideration the speaking style of a person, vocal tract information, timbral qualities of his voice and other congenital information regarding his voice. The study of Bengali speech recognition and speaker identification is scarce in the literature. Hence the need arises for involving Bengali subjects in modelling our speaker identification engine. In this work, we have extracted some acoustic features of speech using non linear multifractal analysis. The Multifractal Detrended Fluctuation Analysis reveals essentially the complexity associated with the speech signals taken. The source characteristics have been quantified with the help of different techniques like Correlation Matrix, skewness of MFDFA spectrum etc. The Results obtained from this study gives a good recognition rate for Bengali Speakers.



rate research

Read More

In this report, we describe our submission to the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2020. Two approaches are adopted. One is to apply query expansion on speaker verification, which shows significant progress compared to baseline in the study. Another is to use Kaldi extract x-vector and to combine its Probabilistic Linear Discriminant Analysis (PLDA) score with ResNet score.
153 - Xu Xiang 2020
This report describes the systems submitted to the first and second tracks of the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2020, which ranked second in both tracks. Three key points of the system pipeline are explored: (1) investigating multiple CNN architectures including ResNet, Res2Net and dual path network (DPN) to extract the x-vectors, (2) using a composite angular margin softmax loss to train the speaker models, and (3) applying score normalization and system fusion to boost the performance. Measured on the VoxSRC-20 Eval set, the best submitted systems achieve an EER of $3.808%$ and a MinDCF of $0.1958$ in the close-condition track 1, and an EER of $3.798%$ and a MinDCF of $0.1942$ in the open-condition track 2, respectively.
The fifth Oriental Language Recognition (OLR) Challenge focuses on language recognition in a variety of complex environments to promote its development. The OLR 2020 Challenge includes three tasks: (1) cross-channel language identification, (2) dialect identification, and (3) noisy language identification. We choose Cavg as the principle evaluation metric, and the Equal Error Rate (EER) as the secondary metric. There were 58 teams participating in this challenge and one third of the teams submitted valid results. Compared with the best baseline, the Cavg values of Top 1 system for the three tasks were relatively reduced by 82%, 62% and 48%, respectively. This paper describes the three tasks, the database profile, and the final results. We also outline the novel approaches that improve the performance of language recognition systems most significantly, such as the utilization of auxiliary information.
Most of the recent state-of-the-art results for speaker verification are achieved by X-vector and its subsequent variants. In this paper, we propose a new network architecture which aggregates the channel and context interdependence features from multi aspect based on Time Delay Neural Network (TDNN). Firstly, we use the SE-Res2Blocks as in ECAPA-TDNN to explicitly model the channel interdependence to realize adaptive calibration of channel features, and process local context features in a multi-scale way at a more granular level compared with conventional TDNN-based methods. Secondly, we explore to use the encoder structure of Transformer to model the global context interdependence features at an utterance level which can capture better long term temporal characteristics. Before the pooling layer, we aggregate the outputs of SE-Res2Blocks and Transformer encoder to leverage the complementary channel and context interdependence features learned by themself respectively. Finally, instead of performing a single attentive statistics pooling, we also find it beneficial to extend the pooling method in a multi-head way which can discriminate features from multiple aspect. The proposed MACCIF-TDNN architecture can outperform most of the state-of-the-art TDNN-based systems on VoxCeleb1 test sets.
We propose speaker separation using speaker inventories and estimated speech (SSUSIES), a framework leveraging speaker profiles and estimated speech for speaker separation. SSUSIES contains two methods, speaker separation using speaker inventories (SSUSI) and speaker separation using estimated speech (SSUES). SSUSI performs speaker separation with the help of speaker inventory. By combining the advantages of permutation invariant training (PIT) and speech extraction, SSUSI significantly outperforms conventional approaches. SSUES is a widely applicable technique that can substantially improve speaker separation performance using the output of first-pass separation. We evaluate the models on both speaker separation and speech recognition metrics.
comments (0)
no comments...
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا